A multi-covariate semi-parametric conditional volatility model using probabilistic fuzzy systems

Value at Risk (VaR) has been successfully estimated using single covariate probabilistic fuzzy systems (PFS), a method which combines a linguistic description of the system behaviour with statistical properties of data. In this paper, we consider VaR estimation based on a PFS model for density forec...

Full description

Saved in:
Bibliographic Details
Published in:2012 IEEE Conference on Computational Intelligence for Financial Engineering & Economics (CIFEr) pp. 1 - 8
Main Authors: Almeida, R. J., Basturk, N., Kaymak, U., Milea, V.
Format: Conference Proceeding
Language:English
Published: IEEE 01-03-2012
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Value at Risk (VaR) has been successfully estimated using single covariate probabilistic fuzzy systems (PFS), a method which combines a linguistic description of the system behaviour with statistical properties of data. In this paper, we consider VaR estimation based on a PFS model for density forecast of a continuous response variable conditional on a high-dimensional set of covariates. The PFS model parameters are estimated by a novel two-step process. The performance of the proposed model is compared to the performance of a GARCH model for VaR estimation of the S&P 500 index. Furthermore, the additional information and process understanding provided by the different interpretations of the PFS models are illustrated. Our findings show that the validity of GARCH models are sometimes rejected, while those of PFS models of VaR are never rejected. Additionally, the PFS model captures both instant and periods of high volatility, and leads to less conservative models.
AbstractList Value at Risk (VaR) has been successfully estimated using single covariate probabilistic fuzzy systems (PFS), a method which combines a linguistic description of the system behaviour with statistical properties of data. In this paper, we consider VaR estimation based on a PFS model for density forecast of a continuous response variable conditional on a high-dimensional set of covariates. The PFS model parameters are estimated by a novel two-step process. The performance of the proposed model is compared to the performance of a GARCH model for VaR estimation of the S&P 500 index. Furthermore, the additional information and process understanding provided by the different interpretations of the PFS models are illustrated. Our findings show that the validity of GARCH models are sometimes rejected, while those of PFS models of VaR are never rejected. Additionally, the PFS model captures both instant and periods of high volatility, and leads to less conservative models.
Author Basturk, N.
Almeida, R. J.
Milea, V.
Kaymak, U.
Author_xml – sequence: 1
  givenname: R. J.
  surname: Almeida
  fullname: Almeida, R. J.
  email: rjalmeida@ese.eur.nl
  organization: Dept. of Econ., Erasmus Univ. Rotterdam, Rotterdam, Netherlands
– sequence: 2
  givenname: N.
  surname: Basturk
  fullname: Basturk, N.
  email: basturk@ese.eur.nl
  organization: Dept. of Econ., Erasmus Univ. Rotterdam, Rotterdam, Netherlands
– sequence: 3
  givenname: U.
  surname: Kaymak
  fullname: Kaymak, U.
  email: u.kaymak@ieee.org
  organization: Sch. of Ind. Eng., Eindhoven Univ. of Technol., Eindhoven, Netherlands
– sequence: 4
  givenname: V.
  surname: Milea
  fullname: Milea, V.
  email: milea@ese.eur.nl
  organization: Dept. of Econ., Erasmus Univ. Rotterdam, Rotterdam, Netherlands
BookMark eNpFkM1qAjEUhVNqoWp9gXaTFxh78zfJLEXUCkI37dreZGJJmZnIJArj01eo0NXhfHC-xZmQURc7T8gzgzljUL0ut-tVP-fA-LwUXOtS3ZEJk6UWzIBQ9_-F6xEZc2GgMFLJRzJL6QcABNPaqHJMvha0PTU5FC6esQ-YPU2-DcURe2x97oOjLnZ1yCF22NBzbDCHJuSBtrH2DT2l0H3TYx8t2itP-To4nC6XgaYhZd-mJ_JwwCb52S2n5HO9-li-Fbv3zXa52BWBaZULXitjNUhlywoZskqYA6AH6Z2oRG2NtV5zJwUH6bSoJNSAzrgSHSqtmJiSlz9v8N7vj31osR_2t3fEL6AWWxA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CIFEr.2012.6327765
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 1467318035
9781467318013
9781467318037
1467318019
EndPage 8
ExternalDocumentID 6327765
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-2d58b7045b69a1a1938f0ae04ec393db8bbe72c43204c73940d0ac8c6aca57513
IEDL.DBID RIE
ISBN 1467318027
9781467318020
ISSN 2380-8454
IngestDate Wed Jun 26 19:24:20 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-2d58b7045b69a1a1938f0ae04ec393db8bbe72c43204c73940d0ac8c6aca57513
PageCount 8
ParticipantIDs ieee_primary_6327765
PublicationCentury 2000
PublicationDate 2012-March
PublicationDateYYYYMMDD 2012-03-01
PublicationDate_xml – month: 03
  year: 2012
  text: 2012-March
PublicationDecade 2010
PublicationTitle 2012 IEEE Conference on Computational Intelligence for Financial Engineering & Economics (CIFEr)
PublicationTitleAbbrev CIFEr
PublicationYear 2012
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003177856
ssj0000817949
Score 1.5589772
Snippet Value at Risk (VaR) has been successfully estimated using single covariate probabilistic fuzzy systems (PFS), a method which combines a linguistic description...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Cognition
Estimation
Fuzzy systems
Histograms
Portfolios
Probabilistic logic
Reactive power
Title A multi-covariate semi-parametric conditional volatility model using probabilistic fuzzy systems
URI https://ieeexplore.ieee.org/document/6327765
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVoJ6YCLeJbHhhx6yaO7YyotCoLQgIktmI7NupAi2iDRH89d04ahMTCFkeyEvmc3Lvz3XuEXAYnUgdxAEO1IybCULIcmTBFAPisXB5sVJ6bPqi7Z30zRpqcq6YXxnsfi898Hy_jWX6xdCWmygYyTZSSWYu0VK6rXq0mnwKuDbZW3ozBLyqdVdpymjMtMhH7uqRKkfRMbeme6jHfNtTwfDC6nYyRKnSY9Osn_pJeiZ5n0vnfO--R3k8LH71vnNM-2fGLA9LZajjQ-pPukpdrGmsKmVt-QtgMyJOu_NucISX4G6ptOQoRczGvUoYUfmZgSoTuNGroUKybf6UoSxOpepH1mYZys_miFUf0qkeeJuPH0ZTVqgtsDlBizZIi01YB0rMyN0MDAE8HbjwX3qV5WlhtrVcJmDjhwikUVi-4cdpJ4wwe4qSHpL1YLvwRoRymehmEsgUAQ2M0gEOZmsBtZorgs2PSxQWbvVfEGrN6rU7-vn1KdtEmVQHYGWmvP0p_TlqroryIW-EbUdCuZw
link.rule.ids 310,311,782,786,791,792,798,27934,54767
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDDDxKuKNB0bcuoljOyMqrVpREBJFYiuOH6gDLaIUCX49d05ahMTCFkeyEvmc3Hfnu-8j5DxYkVqIAxiqHTERWpLlyIQpAsBnZfNQROW53r26fdRXHaTJuVj2wnjvY_GZb-BlPMt3UzvHVFlTpolSMlsla5lQUpXdWsuMCjg32Fz5cgyeUemsVJfTnGmRidjZJVWKtGdqQfhUjfmipYbnzXa_20Gy0FbSqJ75S3wl-p7u5v_eeovUf5r46N3SPW2TFT_ZIZsLFQdafdS75OmSxqpCZqcfEDgD9qQz_zJmSAr-gnpblkLM7MZl0pDC7wyMieCdRhUdipXzzxSFaSJZL_I-0zD_-vqkJUv0rE4eup1hu8cq3QU2BjDxzhKX6UIB1itkbloGIJ4O3HguvE3z1BW6KLxKwMgJF1ahtLrjxmorjTV4jJPukdpkOvH7hHKY6mUQqnAADY3RAA9lagIvMuOCzw7ILi7Y6LWk1hhVa3X49-0zst4b3gxGg_7t9RHZQPuU5WDHpPb-NvcnZHXm5qdxW3wDsjqxuA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2012+IEEE+Conference+on+Computational+Intelligence+for+Financial+Engineering+%26+Economics+%28CIFEr%29&rft.atitle=A+multi-covariate+semi-parametric+conditional+volatility+model+using+probabilistic+fuzzy+systems&rft.au=Almeida%2C+R.+J.&rft.au=Basturk%2C+N.&rft.au=Kaymak%2C+U.&rft.au=Milea%2C+V.&rft.date=2012-03-01&rft.pub=IEEE&rft.isbn=9781467318020&rft.issn=2380-8454&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FCIFEr.2012.6327765&rft.externalDocID=6327765
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2380-8454&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2380-8454&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2380-8454&client=summon