Residual information to estimate uncertainty and improve the spectral linear mixing model solution

This paper proposes an analysis on the residual term resulting from the Linear Spectral Mixing Model (SLMM) solution in order to access model uncertainty. The framework employed here is based on analysis of data produced initially by unmixing of vegetation, bare soil and shade/water, whose are commo...

Full description

Saved in:
Bibliographic Details
Published in:2012 IEEE International Geoscience and Remote Sensing Symposium pp. 3471 - 3473
Main Authors: Zanotta, D. C., Haertel, V., Shimabukuro, Y. E., Renno, C. D.
Format: Conference Proceeding
Language:English
Published: IEEE 01-07-2012
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper proposes an analysis on the residual term resulting from the Linear Spectral Mixing Model (SLMM) solution in order to access model uncertainty. The framework employed here is based on analysis of data produced initially by unmixing of vegetation, bare soil and shade/water, whose are commonly used as standard endmembers. We suggest procedures to identify missing components in the mixture problem and automatically compute the spectral endmember values for these components directly from image data and residual information. The techniques proposed have been tested on real TM-Landsat. The results obtained promises and confirm the validity of the proposed approach.
AbstractList This paper proposes an analysis on the residual term resulting from the Linear Spectral Mixing Model (SLMM) solution in order to access model uncertainty. The framework employed here is based on analysis of data produced initially by unmixing of vegetation, bare soil and shade/water, whose are commonly used as standard endmembers. We suggest procedures to identify missing components in the mixture problem and automatically compute the spectral endmember values for these components directly from image data and residual information. The techniques proposed have been tested on real TM-Landsat. The results obtained promises and confirm the validity of the proposed approach.
Author Renno, C. D.
Shimabukuro, Y. E.
Zanotta, D. C.
Haertel, V.
Author_xml – sequence: 1
  givenname: D. C.
  surname: Zanotta
  fullname: Zanotta, D. C.
  email: daniel.zanotta@riogrande.ifrs.edu.br
  organization: Nat. Inst. for Space Res., São José dos Campos, Brazil
– sequence: 2
  givenname: V.
  surname: Haertel
  fullname: Haertel, V.
  organization: Center for Remote Sensing, Fed. Univ. at Rio Grande do Sul, Porto Alegre, Brazil
– sequence: 3
  givenname: Y. E.
  surname: Shimabukuro
  fullname: Shimabukuro, Y. E.
  organization: Nat. Inst. for Space Res., São José dos Campos, Brazil
– sequence: 4
  givenname: C. D.
  surname: Renno
  fullname: Renno, C. D.
  organization: Nat. Inst. for Space Res., São José dos Campos, Brazil
BookMark eNpNkN1KAzEQhaNWsNY-QW_yAlszSbNJLkvRWigIrV6X_MxqZDdbdlPRt3fFXnhuZg4fcxjOLRmlNiEhM2BzAGbuN-vlbr-fcwZ8XgrJSiUuyNQoDYthBZBaX5IxBykKxZi4-s9KBqMzK40pb8i07z_YIA1aKDEmbod9DCdb05iqtmtsjm2iuaXY5zg4pKfkscs2pvxNbQo0Nseu_USa35H2R_S5G47rmNB2tIlfMb3Rpg1Y076tT79pd-S6snWP0_OckNfHh5fVU7F9Xm9Wy20RQclccOaYCU6FhVuYMnihmVeSBdBcIAJ4C8FWjgnPNTjJUBlpPFrvtOGVF2JCZn-5EREPx254v_s-nBsTP931X1g
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/IGARSS.2012.6350673
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISBN 9781467311588
1467311588
9781467311595
1467311596
EISSN 2153-7003
EndPage 3473
ExternalDocumentID 6350673
Genre orig-research
GroupedDBID 29I
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i175t-20b09db7d4b496dc380c750d1823ee11ca1dafb03c281b50e7959ceacb892fc33
IEDL.DBID RIE
ISBN 9781467311601
146731160X
ISSN 2153-6996
IngestDate Wed Jun 26 19:23:09 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-20b09db7d4b496dc380c750d1823ee11ca1dafb03c281b50e7959ceacb892fc33
PageCount 3
ParticipantIDs ieee_primary_6350673
PublicationCentury 2000
PublicationDate 2012-July
PublicationDateYYYYMMDD 2012-07-01
PublicationDate_xml – month: 07
  year: 2012
  text: 2012-July
PublicationDecade 2010
PublicationTitle 2012 IEEE International Geoscience and Remote Sensing Symposium
PublicationTitleAbbrev IGARSS
PublicationYear 2012
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000818373
ssj0038200
Score 1.5279095
Snippet This paper proposes an analysis on the residual term resulting from the Linear Spectral Mixing Model (SLMM) solution in order to access model uncertainty. The...
SourceID ieee
SourceType Publisher
StartPage 3471
SubjectTerms endmember extraction
Estimation
Image segmentation
Indexes
Remote sensing
residual term
Soil
Spectral mixture analysis
Uncertainty
Vegetation mapping
Title Residual information to estimate uncertainty and improve the spectral linear mixing model solution
URI https://ieeexplore.ieee.org/document/6350673
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JasMwEBVNoJBTl6R0R4ce68Sy5EXH0mbppZSkhdyCljHkUKckDjR_35HsuBR66c0yGAkt857GM28IuYsVWsbcsCDXSR4IIaJAWpEHoYAoUwoZErh858ksfZlnT0Mnk3Pf5MIAgA8-g7579P_y7cpsnatsgODo6qq0SCuVWZWr1fhTnDQbTxsrzBHZnH8FEY0HiXQSfh1nFDhjSTjfaz3VbVbLEbFQDp7HD9PZzMV8Rf26v1-FVzzujI7-N-Jj0vtJ4KOvDTSdkAMoTsnh2Ffx3XWJnsLGJ2HRWjfVrQ4tV9RJbmALKKJdFStQ7qgqLF163wNQpIvUJ2eu8WPHUNWafiy_sBPqa-rQ_VbukffR8O1xEtTFFoIlMogST4sOpdWpFVrIxBqehQbZhMX7BwdgzChmVa5DbiJkunEIrki5QbOtMxnlhvMz0i5WBZwTiowoyYyyMXC8_AmmEwuRhVTFaSgz0Bek62Zq8VnpaSzqSbr8-_UV6bjFqEJkr0m7XG_hhrQ2dnvrd8A3RUWsRQ
link.rule.ids 310,311,782,786,791,792,798,27934,54767
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxFA62Ivbk0oq7OXh02skksx1Fu2Et0lborWR5Az04lS5g_70v6bQiePE2GRgSsrzvy5v3vkfIfSjRMmaaeZmKMk8IEXipEZnnCwgSKZEhgc137gzj_jh5blqZnIddLgwAuOAzqNtH9y_fzPTKusoaCI62rkqJ7IcijuJNttbOo2LF2Xi8s8Mcsc16WBDTuBelVsSvYs0CZyzyx1u1p6LNCkEi5qeNbvtxMBzaqK-gXvT4q_SKQ57W0f_GfExqPyl89G0HTidkD_JTctB2dXzXVaIGsHBpWLRQTrXrQ5czakU3sAUU8W4TLbBcU5kbOnXeB6BIGKlLz5zjx5ajyjn9mH5hJ9RV1aHbzVwj763m6KnjFeUWvClyiCWeF-WnRsVGKJFGRvPE18gnDN5AOABjWjIjM-VzHSDXDX2wZco1Gm6VpEGmOT8j5XyWwzmhyImiREsTAsfrn2AqMhAYiGUY-2kC6oJU7UxNPjeKGpNiki7_fn1HDjuj196k1-2_XJGKXZhNwOw1KS_nK7ghpYVZ3brd8A2KQK-W
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2012+IEEE+International+Geoscience+and+Remote+Sensing+Symposium&rft.atitle=Residual+information+to+estimate+uncertainty+and+improve+the+spectral+linear+mixing+model+solution&rft.au=Zanotta%2C+D.+C.&rft.au=Haertel%2C+V.&rft.au=Shimabukuro%2C+Y.+E.&rft.au=Renno%2C+C.+D.&rft.date=2012-07-01&rft.pub=IEEE&rft.isbn=9781467311601&rft.issn=2153-6996&rft.eissn=2153-7003&rft.spage=3471&rft.epage=3473&rft_id=info:doi/10.1109%2FIGARSS.2012.6350673&rft.externalDocID=6350673
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2153-6996&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2153-6996&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2153-6996&client=summon