Detection of Epilepsy Using Wavelet Coherence and Convolutional Neural Networks
According to the World Health Organization, epilepsy is a disease that affects approximately 50 million people worldwide. Due to the unexpected onset of epileptic seizures, it can lead to bodily injury and death. For this reason, it is very important to predict epilepsy. In this study, it was aimed...
Saved in:
Published in: | 2021 Medical Technologies Congress (TIPTEKNO) pp. 1 - 4 |
---|---|
Main Authors: | , , , |
Format: | Conference Proceeding |
Language: | English Turkish |
Published: |
IEEE
04-11-2021
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | According to the World Health Organization, epilepsy is a disease that affects approximately 50 million people worldwide. Due to the unexpected onset of epileptic seizures, it can lead to bodily injury and death. For this reason, it is very important to predict epilepsy. In this study, it was aimed to detect epilepsy by using Electroencephalogram (EEG) signals recorded from Bonn Epilepsy Laboratory. Wavelet Coherence Analysis and Convolutional Neural Networks were used for this aim. Classification results show that accuracy of different clusters in the data set using the proposed method were obtained as 96% for N-S clusters, 96.5% for F-S clusters, 99% for Z-S clusters and 100% for O-S clusters.The results show that the proposed method is promising in estimating epilepsy from EEG signals. |
---|---|
AbstractList | According to the World Health Organization, epilepsy is a disease that affects approximately 50 million people worldwide. Due to the unexpected onset of epileptic seizures, it can lead to bodily injury and death. For this reason, it is very important to predict epilepsy. In this study, it was aimed to detect epilepsy by using Electroencephalogram (EEG) signals recorded from Bonn Epilepsy Laboratory. Wavelet Coherence Analysis and Convolutional Neural Networks were used for this aim. Classification results show that accuracy of different clusters in the data set using the proposed method were obtained as 96% for N-S clusters, 96.5% for F-S clusters, 99% for Z-S clusters and 100% for O-S clusters.The results show that the proposed method is promising in estimating epilepsy from EEG signals. |
Author | Ustu, Mehmet Ileri, Ramis Latifoglu, Fatma Bozdogan, Ayse |
Author_xml | – sequence: 1 givenname: Ayse surname: Bozdogan fullname: Bozdogan, Ayse email: aysebozdogan989@gmail.com organization: Erciyes Üniversitesi,Biyomedikal Müh. Bölümü,Kayseri – sequence: 2 givenname: Mehmet surname: Ustu fullname: Ustu, Mehmet email: udubey279@gmail.com organization: Erciyes Üniversitesi,Biyomedikal Müh. Bölümü,Kayseri – sequence: 3 givenname: Ramis surname: Ileri fullname: Ileri, Ramis email: ramissileri@gmail.com organization: Erciyes Üniversitesi,Biyomedikal Müh. Bölümü,Kayseri – sequence: 4 givenname: Fatma surname: Latifoglu fullname: Latifoglu, Fatma email: flatifoglu@erciyes.edu.tr organization: Erciyes Üniversitesi,Biyomedikal Müh. Bölümü,Kayseri |
BookMark | eNotUMtOg0AUHY0m1soXuJm4B-fFPJYGqzY2xQWNy2aAO4riQBha078XtauT81ycS3TmOw8I3VCSUErMbbF8KRbP6zzljJuEEUYTIzkzUpygyChNpUwFl5N0imZMahUrpfkFikL4IISwlE5hPkP5PYxQjU3ncefwom9a6MMBb0Lj3_Cr3UMLI866dxjAV4Ctryfm9127--3YFq9hN_zB-N0Nn-EKnTvbBoiOOEebh0WRPcWr_HGZ3a3ihnI-xo5WghkFWtSllpVxmlUGjNVUMEJLAlI5N3ncOl1CXYpKCCVrqomQlBPN5-j6f7cBgG0_NF92OGyPF_AfpeBUAg |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/TIPTEKNO53239.2021.9632964 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781665436632 1665436638 |
EISSN | 2687-7783 |
EndPage | 4 |
ExternalDocumentID | 9632964 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IL 6IN AAJGR ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK M43 OCL RIE RIL |
ID | FETCH-LOGICAL-i133t-f1c4297e84db86c9f82c9e9a814201b0e67ff4db3af8bedb4c4476d1804613083 |
IEDL.DBID | RIE |
IngestDate | Wed Jun 26 19:25:34 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English Turkish |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i133t-f1c4297e84db86c9f82c9e9a814201b0e67ff4db3af8bedb4c4476d1804613083 |
PageCount | 4 |
ParticipantIDs | ieee_primary_9632964 |
PublicationCentury | 2000 |
PublicationDate | 2021-Nov.-4 |
PublicationDateYYYYMMDD | 2021-11-04 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-Nov.-4 day: 04 |
PublicationDecade | 2020 |
PublicationTitle | 2021 Medical Technologies Congress (TIPTEKNO) |
PublicationTitleAbbrev | TIPTEKNO |
PublicationYear | 2021 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0002513293 |
Score | 1.8251495 |
Snippet | According to the World Health Organization, epilepsy is a disease that affects approximately 50 million people worldwide. Due to the unexpected onset of... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Coherence Convolutional Neural Network Convolutional neural networks Electroencephalography Epilepsy Neural networks Organizations Wavelet analysis Wavelet Coherence Analysis |
Title | Detection of Epilepsy Using Wavelet Coherence and Convolutional Neural Networks |
URI | https://ieeexplore.ieee.org/document/9632964 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH64nTypbOJvcvBotrXJ2uTsOhRhGzjR20iTFxCkG64T9t_7kpWJ4MVTmoSW8JLy5SXv-x7AbTbEbFAKyaU1OZfGG27KVHGfBfkxQhxtYuqE53zypkZFkMm523NhEDEGn2EvPMa7fLe0m3BU1qfFEm4JW9DKtdpxtfbnKYTT1CkaXdFkoPvzx9m8eJpMhyKNlJQ06TUf-JVJJQLJ-Oh_QziG7g8jj832WHMCB1h1YDrCOkZSVWzpWbGiH3y13rIYBcBeTUgpUbPAv9i9bypHteqrWWzmgwVljljEUPB1F17Gxfz-gTcJEvg7uZY194klOMlRSVeqzGqvUqtRG5VIsnI5wCz3nvqE8apEV0orZZ65RAWVdUGbr1NoV8sKz4Cl5LjY6EygkU5blTohh0IGRTVDW6Zz6ARjLFY7DYxFY4eLv5sv4TDYO3L25BW0688NXkNr7TY3cda-AUkjl3I |
link.rule.ids | 310,311,782,786,791,792,798,27934,54767 |
linkProvider | IEEE |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH64edCTyib-NgePZlubtE3PrmNjcxtY0dtIkxcQpBuuE_zvTbIyEbx46o_QEr6mfHnJ-74HcBdHGPcKxilXMqFcGkllEQpqYmc_Zhknlb50wlMyfRX9zNnk3O-0MIjok8-w4079Xr5eqo1bKuvaweJ2CRuwH_EkTrZqrd2KimVq28xqZ9Ggl3bz0TzPxtNZxEIvSgmDTv2KX7VUPJUMjv7XiWNo_2jyyHzHNiewh2ULZn2sfC5VSZaGZCv7i6_WX8TnAZAX6YpKVMQpMLbPy1Lbq_KzHm7ynThvDn_wyeDrNjwPsvxhSOsSCfTNBpcVNYGyhJKg4LoQsUqNCFWKqRQBtzgXPYwTY2wbk0YUqAuuuEVOB8L5rDM7_TqFZrks8QxIaEMX5cMJlFynSoSa8Yhx56km7aTpHFoOjMVq64KxqHG4-Pv2LRwM88fJYjKaji_h0GHvFXz8CprVxwavobHWmxv_Bb8BdKGaww |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+Medical+Technologies+Congress+%28TIPTEKNO%29&rft.atitle=Detection+of+Epilepsy+Using+Wavelet+Coherence+and+Convolutional+Neural+Networks&rft.au=Bozdogan%2C+Ayse&rft.au=Ustu%2C+Mehmet&rft.au=Ileri%2C+Ramis&rft.au=Latifoglu%2C+Fatma&rft.date=2021-11-04&rft.pub=IEEE&rft.eissn=2687-7783&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FTIPTEKNO53239.2021.9632964&rft.externalDocID=9632964 |