Detection of Epilepsy Using Wavelet Coherence and Convolutional Neural Networks

According to the World Health Organization, epilepsy is a disease that affects approximately 50 million people worldwide. Due to the unexpected onset of epileptic seizures, it can lead to bodily injury and death. For this reason, it is very important to predict epilepsy. In this study, it was aimed...

Full description

Saved in:
Bibliographic Details
Published in:2021 Medical Technologies Congress (TIPTEKNO) pp. 1 - 4
Main Authors: Bozdogan, Ayse, Ustu, Mehmet, Ileri, Ramis, Latifoglu, Fatma
Format: Conference Proceeding
Language:English
Turkish
Published: IEEE 04-11-2021
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract According to the World Health Organization, epilepsy is a disease that affects approximately 50 million people worldwide. Due to the unexpected onset of epileptic seizures, it can lead to bodily injury and death. For this reason, it is very important to predict epilepsy. In this study, it was aimed to detect epilepsy by using Electroencephalogram (EEG) signals recorded from Bonn Epilepsy Laboratory. Wavelet Coherence Analysis and Convolutional Neural Networks were used for this aim. Classification results show that accuracy of different clusters in the data set using the proposed method were obtained as 96% for N-S clusters, 96.5% for F-S clusters, 99% for Z-S clusters and 100% for O-S clusters.The results show that the proposed method is promising in estimating epilepsy from EEG signals.
AbstractList According to the World Health Organization, epilepsy is a disease that affects approximately 50 million people worldwide. Due to the unexpected onset of epileptic seizures, it can lead to bodily injury and death. For this reason, it is very important to predict epilepsy. In this study, it was aimed to detect epilepsy by using Electroencephalogram (EEG) signals recorded from Bonn Epilepsy Laboratory. Wavelet Coherence Analysis and Convolutional Neural Networks were used for this aim. Classification results show that accuracy of different clusters in the data set using the proposed method were obtained as 96% for N-S clusters, 96.5% for F-S clusters, 99% for Z-S clusters and 100% for O-S clusters.The results show that the proposed method is promising in estimating epilepsy from EEG signals.
Author Ustu, Mehmet
Ileri, Ramis
Latifoglu, Fatma
Bozdogan, Ayse
Author_xml – sequence: 1
  givenname: Ayse
  surname: Bozdogan
  fullname: Bozdogan, Ayse
  email: aysebozdogan989@gmail.com
  organization: Erciyes Üniversitesi,Biyomedikal Müh. Bölümü,Kayseri
– sequence: 2
  givenname: Mehmet
  surname: Ustu
  fullname: Ustu, Mehmet
  email: udubey279@gmail.com
  organization: Erciyes Üniversitesi,Biyomedikal Müh. Bölümü,Kayseri
– sequence: 3
  givenname: Ramis
  surname: Ileri
  fullname: Ileri, Ramis
  email: ramissileri@gmail.com
  organization: Erciyes Üniversitesi,Biyomedikal Müh. Bölümü,Kayseri
– sequence: 4
  givenname: Fatma
  surname: Latifoglu
  fullname: Latifoglu, Fatma
  email: flatifoglu@erciyes.edu.tr
  organization: Erciyes Üniversitesi,Biyomedikal Müh. Bölümü,Kayseri
BookMark eNotUMtOg0AUHY0m1soXuJm4B-fFPJYGqzY2xQWNy2aAO4riQBha078XtauT81ycS3TmOw8I3VCSUErMbbF8KRbP6zzljJuEEUYTIzkzUpygyChNpUwFl5N0imZMahUrpfkFikL4IISwlE5hPkP5PYxQjU3ncefwom9a6MMBb0Lj3_Cr3UMLI866dxjAV4Ctryfm9127--3YFq9hN_zB-N0Nn-EKnTvbBoiOOEebh0WRPcWr_HGZ3a3ihnI-xo5WghkFWtSllpVxmlUGjNVUMEJLAlI5N3ncOl1CXYpKCCVrqomQlBPN5-j6f7cBgG0_NF92OGyPF_AfpeBUAg
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/TIPTEKNO53239.2021.9632964
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665436632
1665436638
EISSN 2687-7783
EndPage 4
ExternalDocumentID 9632964
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i133t-f1c4297e84db86c9f82c9e9a814201b0e67ff4db3af8bedb4c4476d1804613083
IEDL.DBID RIE
IngestDate Wed Jun 26 19:25:34 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
Turkish
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i133t-f1c4297e84db86c9f82c9e9a814201b0e67ff4db3af8bedb4c4476d1804613083
PageCount 4
ParticipantIDs ieee_primary_9632964
PublicationCentury 2000
PublicationDate 2021-Nov.-4
PublicationDateYYYYMMDD 2021-11-04
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-Nov.-4
  day: 04
PublicationDecade 2020
PublicationTitle 2021 Medical Technologies Congress (TIPTEKNO)
PublicationTitleAbbrev TIPTEKNO
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002513293
Score 1.8251495
Snippet According to the World Health Organization, epilepsy is a disease that affects approximately 50 million people worldwide. Due to the unexpected onset of...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Coherence
Convolutional Neural Network
Convolutional neural networks
Electroencephalography
Epilepsy
Neural networks
Organizations
Wavelet analysis
Wavelet Coherence Analysis
Title Detection of Epilepsy Using Wavelet Coherence and Convolutional Neural Networks
URI https://ieeexplore.ieee.org/document/9632964
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH64nTypbOJvcvBotrXJ2uTsOhRhGzjR20iTFxCkG64T9t_7kpWJ4MVTmoSW8JLy5SXv-x7AbTbEbFAKyaU1OZfGG27KVHGfBfkxQhxtYuqE53zypkZFkMm523NhEDEGn2EvPMa7fLe0m3BU1qfFEm4JW9DKtdpxtfbnKYTT1CkaXdFkoPvzx9m8eJpMhyKNlJQ06TUf-JVJJQLJ-Oh_QziG7g8jj832WHMCB1h1YDrCOkZSVWzpWbGiH3y13rIYBcBeTUgpUbPAv9i9bypHteqrWWzmgwVljljEUPB1F17Gxfz-gTcJEvg7uZY194klOMlRSVeqzGqvUqtRG5VIsnI5wCz3nvqE8apEV0orZZ65RAWVdUGbr1NoV8sKz4Cl5LjY6EygkU5blTohh0IGRTVDW6Zz6ARjLFY7DYxFY4eLv5sv4TDYO3L25BW0688NXkNr7TY3cda-AUkjl3I
link.rule.ids 310,311,782,786,791,792,798,27934,54767
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH64edCTyib-NgePZlubtE3PrmNjcxtY0dtIkxcQpBuuE_zvTbIyEbx46o_QEr6mfHnJ-74HcBdHGPcKxilXMqFcGkllEQpqYmc_Zhknlb50wlMyfRX9zNnk3O-0MIjok8-w4079Xr5eqo1bKuvaweJ2CRuwH_EkTrZqrd2KimVq28xqZ9Ggl3bz0TzPxtNZxEIvSgmDTv2KX7VUPJUMjv7XiWNo_2jyyHzHNiewh2ULZn2sfC5VSZaGZCv7i6_WX8TnAZAX6YpKVMQpMLbPy1Lbq_KzHm7ynThvDn_wyeDrNjwPsvxhSOsSCfTNBpcVNYGyhJKg4LoQsUqNCFWKqRQBtzgXPYwTY2wbk0YUqAuuuEVOB8L5rDM7_TqFZrks8QxIaEMX5cMJlFynSoSa8Yhx56km7aTpHFoOjMVq64KxqHG4-Pv2LRwM88fJYjKaji_h0GHvFXz8CprVxwavobHWmxv_Bb8BdKGaww
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+Medical+Technologies+Congress+%28TIPTEKNO%29&rft.atitle=Detection+of+Epilepsy+Using+Wavelet+Coherence+and+Convolutional+Neural+Networks&rft.au=Bozdogan%2C+Ayse&rft.au=Ustu%2C+Mehmet&rft.au=Ileri%2C+Ramis&rft.au=Latifoglu%2C+Fatma&rft.date=2021-11-04&rft.pub=IEEE&rft.eissn=2687-7783&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FTIPTEKNO53239.2021.9632964&rft.externalDocID=9632964