Using Ensemble of Multiple Fine-Tuned EfficientNet Models for Skin Cancer Classification

Skin cancer is a prevalent form of cancer, and its early and accurate identification is critical for effective treatment. In this research paper, using an ensemble of fine-tuned EfficientNet models we proposed an improved approach for skin cancer classification. Our methodology incorporates data aug...

Full description

Saved in:
Bibliographic Details
Published in:2023 3rd Asian Conference on Innovation in Technology (ASIANCON) pp. 1 - 4
Main Authors: Joshi, Karan P., Davaria, Sneh, Saxena, Kumkum
Format: Conference Proceeding
Language:English
Published: IEEE 25-08-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Skin cancer is a prevalent form of cancer, and its early and accurate identification is critical for effective treatment. In this research paper, using an ensemble of fine-tuned EfficientNet models we proposed an improved approach for skin cancer classification. Our methodology incorporates data augmentation techniques to augment the dataset size, fine-tuning of the EfficientNet model by unfreezing the last few blocks, and employing an average ensemble for enhanced classification accuracy. The proposed approach when compared with other related work proved its effectiveness by outperforming them. Furthermore, our proposed ensemble method shows a precision value of 0.990, and accuracy of 0.988. Our findings demonstrate the effectiveness of the proposed methodology and its potential to significantly improve the diagnosis and treatment of skin cancer.
AbstractList Skin cancer is a prevalent form of cancer, and its early and accurate identification is critical for effective treatment. In this research paper, using an ensemble of fine-tuned EfficientNet models we proposed an improved approach for skin cancer classification. Our methodology incorporates data augmentation techniques to augment the dataset size, fine-tuning of the EfficientNet model by unfreezing the last few blocks, and employing an average ensemble for enhanced classification accuracy. The proposed approach when compared with other related work proved its effectiveness by outperforming them. Furthermore, our proposed ensemble method shows a precision value of 0.990, and accuracy of 0.988. Our findings demonstrate the effectiveness of the proposed methodology and its potential to significantly improve the diagnosis and treatment of skin cancer.
Author Davaria, Sneh
Joshi, Karan P.
Saxena, Kumkum
Author_xml – sequence: 1
  givenname: Karan P.
  surname: Joshi
  fullname: Joshi, Karan P.
  email: karanjoshi010902@gmail.com
  organization: Thadomal Shahani Engineering College,Department of IT,Mumbai,India
– sequence: 2
  givenname: Sneh
  surname: Davaria
  fullname: Davaria, Sneh
  email: snehdavaria@gmail.com
  organization: Thadomal Shahani Engineering College,Department of IT,Mumbai,India
– sequence: 3
  givenname: Kumkum
  surname: Saxena
  fullname: Saxena, Kumkum
  email: kumkum@saxena.ind.in
  organization: Thadomal Shahani Engineering College,Department of IT,Mumbai,India
BookMark eNo1j7FOwzAURY0EA5T-AYMl5oRnOyH2GEUtVGrToa3EVtl5z8gidao4Hfh7KgHTPcPRke4Du41DJMaeBeRCgHmpd6u6bbZtqSujcglS5QJkBRLMDZubymhVggIptb5nH4cU4idfxEQn1xMfPN9c-imcr7wMkbL9JRLyhfehCxSnlia-GZD6xP0w8t1XiLyxsaORN71NKVw9O4UhPrI7b_tE87-dscNysW_es_X2bdXU6ywIYaYMQWiNhRNoyauuKovOUakRpSvIo0DtO0APWupX40A4dB6V0IUiCSUaNWNPv91ARMfzGE52_D7-H1Y_-WpSeQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ASIANCON58793.2023.10270209
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350302288
9798350302257
EndPage 4
ExternalDocumentID 10270209
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-d0188d4b1daef3c754cbe58dd2b4efd1d8fc0df082869b01bdbfd31843e205d93
IEDL.DBID RIE
IngestDate Wed Oct 18 05:40:17 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-d0188d4b1daef3c754cbe58dd2b4efd1d8fc0df082869b01bdbfd31843e205d93
PageCount 4
ParticipantIDs ieee_primary_10270209
PublicationCentury 2000
PublicationDate 2023-Aug.-25
PublicationDateYYYYMMDD 2023-08-25
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-Aug.-25
  day: 25
PublicationDecade 2020
PublicationTitle 2023 3rd Asian Conference on Innovation in Technology (ASIANCON)
PublicationTitleAbbrev ASIANCON
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.916679
Snippet Skin cancer is a prevalent form of cancer, and its early and accurate identification is critical for effective treatment. In this research paper, using an...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Data augmentation
Data models
Deep architecture
Dermatology
efficientnet
ensemble
Ensemble learning
fine-tuning
Measurement
skin cancer
Technological innovation
transfer learning
Title Using Ensemble of Multiple Fine-Tuned EfficientNet Models for Skin Cancer Classification
URI https://ieeexplore.ieee.org/document/10270209
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA62B_GkYsU3Ab2mbjab3eyx1C16sAit0FtpMhMQ6lba7v83kz7EgwdvIZAJzOSd-b6PsYfcOZUZXQq0RS4ym4Z10GgjdOFSjaCsdVE6YVQMJ-apIpocscfCIGJMPsMuFeNfPixcQ09lYYYTeorgeq2iNBuw1iG73_JmPvZGL71wEx5qEwZdl3TBu7sWv7RT4tYxOP5npyes8wPC42_77eWUHWB9xibxi59X9Qo_7Rz5wvPXbUogH4QDoxg3Yd3kVSSGCHaHuOYkdzZf8XA65SS1xfsU6CWPcpiUKBRj02Hvg2rcfxZbcQTxIWW5FpBIYyCzEmbolSt05ixqA5DaDD1IMN4l4ImhLi9tIi1YD4rUXTBNNJTqnLXrRY0XlN00K0B662S4nuQKZ1YrDS71wb4KobxkHXLL9GvDfzHdeeTqj_prdkTOp5fXVN-w9nrZ4C1rraC5iyH7BlqvmW8
link.rule.ids 310,311,782,786,791,792,798,27934,54767
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSgMxFA1aQV2pWPFtQLepzWQyk1mWOqXFdhBaobvS5N6AUKfSdv7fJH2ICxfuQiAJ5OSde84h5CkxRsRKZgx1mrBYR24dVFIxmZpIIgitTbBOGKbFWL3kXiaH7bgwiBiCz7Dhk-EvH-am8k9lboZ79pSn6x3IOE3SNV3rkDxulDOfW8Ney92FC6ncsGt4Z_DGtswv95SweXRO_tnsKan_0PDo226DOSN7WJ6Tcfjkp3m5xE89Qzq3dLAJCqQdd2Rko8qtnDQP0hCu3gJX1BuezZbUnU-pN9uibQ_1ggZDTB8qFNCpk_dOPmp32cYegX1wnq0YNLlSEGsOU7TCpDI2GqUCiHSMFjgoa5pgvUZdkukm16AtCO_vglFTQiYuSK2cl3jp45umKXCrDXcXlETgVEshwUTW1S8cmFek7rtl8rVWwJhse-T6j_wHctQdDfqTfq94vSHHHgj_DhvJW1JbLSq8I_tLqO4DfN-cvpzA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+3rd+Asian+Conference+on+Innovation+in+Technology+%28ASIANCON%29&rft.atitle=Using+Ensemble+of+Multiple+Fine-Tuned+EfficientNet+Models+for+Skin+Cancer+Classification&rft.au=Joshi%2C+Karan+P.&rft.au=Davaria%2C+Sneh&rft.au=Saxena%2C+Kumkum&rft.date=2023-08-25&rft.pub=IEEE&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FASIANCON58793.2023.10270209&rft.externalDocID=10270209