A Deep Learning approach to detect Diabetic Retinopathy with CNN and ResNet

Diabetic Retinopathy (DR) is a disease that is caused by long term diabetes mellitus, which causes lesions on the retina that impact vision. If it is not detected early, it could lead to blindness Deep learning algorithms have yielded encouraging results for detecting DR in retinal pictures. The goa...

Full description

Saved in:
Bibliographic Details
Published in:2023 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI) pp. 1 - 7
Main Authors: L, Antony Rosewelt, E, Nivetha, M, Sakthi Priya, S, Blessy Carolin
Format: Conference Proceeding
Language:English
Published: IEEE 25-05-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Diabetic Retinopathy (DR) is a disease that is caused by long term diabetes mellitus, which causes lesions on the retina that impact vision. If it is not detected early, it could lead to blindness Deep learning algorithms have yielded encouraging results for detecting DR in retinal pictures. The goal of this research is to investigate the feasibility of employing deep convolutional neural networks (CNNs) to detect DR. The work will concentrate on training CNNs to classify different phases of DR utilising large-scale datasets of retinal pictures. The performance of different deep learning models, including ResNet and Inception, will be evaluated, and the robustness of these models to variations in image quality and disease severity will be assessed. The proposed research has the potential to contribute to the development of an accurate and efficient diagnostic tool for the early detection of DR, which can aid in preventing vision loss in diabetic patients. The findings of this research can potentially improve the clinical management of DR and provide better outcomes for patients.
AbstractList Diabetic Retinopathy (DR) is a disease that is caused by long term diabetes mellitus, which causes lesions on the retina that impact vision. If it is not detected early, it could lead to blindness Deep learning algorithms have yielded encouraging results for detecting DR in retinal pictures. The goal of this research is to investigate the feasibility of employing deep convolutional neural networks (CNNs) to detect DR. The work will concentrate on training CNNs to classify different phases of DR utilising large-scale datasets of retinal pictures. The performance of different deep learning models, including ResNet and Inception, will be evaluated, and the robustness of these models to variations in image quality and disease severity will be assessed. The proposed research has the potential to contribute to the development of an accurate and efficient diagnostic tool for the early detection of DR, which can aid in preventing vision loss in diabetic patients. The findings of this research can potentially improve the clinical management of DR and provide better outcomes for patients.
Author M, Sakthi Priya
L, Antony Rosewelt
S, Blessy Carolin
E, Nivetha
Author_xml – sequence: 1
  givenname: Antony Rosewelt
  surname: L
  fullname: L, Antony Rosewelt
  email: antony.cse@sairamit.edu.in
  organization: Sri Sai Ram Institute of Technology,Computer Science and Engineering,Chennai,India
– sequence: 2
  givenname: Nivetha
  surname: E
  fullname: E, Nivetha
  email: sit20cs144@sairamtap.edu.in
  organization: Sri Sai Ram Institute of Technology,Computer Science and Engineering,Chennai,India
– sequence: 3
  givenname: Sakthi Priya
  surname: M
  fullname: M, Sakthi Priya
  email: sit20cs032@sairamtap.edu.in
  organization: Sri Sai Ram Institute of Technology,Computer Science and Engineering,Chennai,India
– sequence: 4
  givenname: Blessy Carolin
  surname: S
  fullname: S, Blessy Carolin
  email: sit20cs134@sairamtap.edu.in
  organization: Sri Sai Ram Institute of Technology,Computer Science and Engineering,Chennai,India
BookMark eNo1j8tKxDAYRiPoQsd5Axd5gdb8SZMmy9LxMlgqyMx6yOWvDWhaOgGZt3dAZ_OdxYED3x25TlNCQiiwEoCZx6Ztm63UnEPJGRclMM4Y1OqKrE1ttJBMgDRM3pK3hm4QZ9qhXVJMn9TO8zJZP9I80YAZfaabaB3m6OnHedM02zye6E_MI237ntoUzuLYY74nN4P9OuL6nyuyf37ata9F9_6ybZuuiAAmF15r71A6z4ORIqCylXU6KK1q51Fq4QX3RkBd2RqcUoMaKs0Nyipw7h0XK_Lw142IeJiX-G2X0-HyUfwCnuhLRw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ACCAI58221.2023.10200176
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350315905
EndPage 7
ExternalDocumentID 10200176
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-c88cbe5bc2d953de6a4ab8d6867bce583c32c93174a71b66f6f4829e54d22cb23
IEDL.DBID RIE
IngestDate Thu Jan 18 11:13:28 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-c88cbe5bc2d953de6a4ab8d6867bce583c32c93174a71b66f6f4829e54d22cb23
PageCount 7
ParticipantIDs ieee_primary_10200176
PublicationCentury 2000
PublicationDate 2023-May-25
PublicationDateYYYYMMDD 2023-05-25
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-May-25
  day: 25
PublicationDecade 2020
PublicationTitle 2023 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI)
PublicationTitleAbbrev ACCAI
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8842137
Snippet Diabetic Retinopathy (DR) is a disease that is caused by long term diabetes mellitus, which causes lesions on the retina that impact vision. If it is not...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Analytical models
Classification
CNN
Computer architecture
Data Visualization
Deep learning
Diabetic retinopathy
Predictive models
Resnet
Training
Visualization
Title A Deep Learning approach to detect Diabetic Retinopathy with CNN and ResNet
URI https://ieeexplore.ieee.org/document/10200176
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA62J08qVnyTg9etzTt7LNuWirCID_BWNsms9LJb7Pbgvzez7VY8ePAWkkBgMsNkMvN9Q8hdECPHufEJA1vGAAVtTgmZcBaifrmoBRLByfMXk7_byRRpcpI9FgYA2uIzGOKwzeWH2m_wqyxaOFYAGd0jPZPaLVirq84ZpffjLBs_qOjxMO7jYtht_9U4pfUbs6N_nnhMBj8IPPq09y0n5ACqU_I4phOAFd1xon7QjhCcNjUNgOkAuq1wWXr6jFjmGhsOf1H8bKVZntOiCnFhnUMzIG-z6Ws2T3bNEJIlY2mTeGu9A-U8D6kSAXQhC2eDtto4D8oKL7hP42tAFoY5rUtdSstTUDJw7h0XZ6Rf1RWcE6oL6xlrSRtjdKikc8xJKYI1QpTC-gsyQEksVlu-i0UnhMs_5q_IIcobc-pcXZN-87mBG9Jbh81te0XfqYmQhg
link.rule.ids 310,311,782,786,791,792,798,27934,54767
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoGWACRBFvPLCm1G9nrNJWrVoiBEViq2L7gliSiqYD_x47bYoYGNgsW5al853O57vvO4TuHesZSpWNCOjcByjB5gTjESXO65fxWsADOHn8otI3PRgGmpxoh4UBgLr4DLphWOfyXWnX4avMW3ioAFKyhfYFV1Jt4FpNfU4vfugnSX8ivM8LkR9l3WbDr9YptecYHf3zzGPU-cHg4aeddzlBe1CcomkfDwCWeMuK-o4bSnBcldhBSAjgTY3Lh8XPAc1chpbDXzh8t-IkTXFWOL-wSqHqoNfRcJ6Mo207hOiDkLiKrNbWgDCWulgwBzLjmdFOaqmMBaGZZdTG_j3AM0WMlLnMuaYxCO4otYayM9QuygLOEZaZtoTUtI0-PhTcGGI4Z04rxnKm7QXqBEkslhvGi0UjhMs_5u_QwXj-OFvMJun0Ch0G2YcMOxXXqF19ruEGtVZufVtf1zd42pPX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+International+Conference+on+Advances+in+Computing%2C+Communication+and+Applied+Informatics+%28ACCAI%29&rft.atitle=A+Deep+Learning+approach+to+detect+Diabetic+Retinopathy+with+CNN+and+ResNet&rft.au=L%2C+Antony+Rosewelt&rft.au=E%2C+Nivetha&rft.au=M%2C+Sakthi+Priya&rft.au=S%2C+Blessy+Carolin&rft.date=2023-05-25&rft.pub=IEEE&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1109%2FACCAI58221.2023.10200176&rft.externalDocID=10200176