Qualitative Analysis of Anomaly Detection in Time Series
We present an end-end system for time series anomaly detection specifically aimed at detecting fraudulent transactions in bank transaction datasets. The goal of anomaly detection is to locate unusual or uncommon occurrences in data. Outlier detection, one of the most crucial data analysis jobs, has...
Saved in:
Published in: | 2022 4th International Conference on Circuits, Control, Communication and Computing (I4C) pp. 250 - 253 |
---|---|
Main Authors: | , , , |
Format: | Conference Proceeding |
Language: | English |
Published: |
IEEE
21-12-2022
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | We present an end-end system for time series anomaly detection specifically aimed at detecting fraudulent transactions in bank transaction datasets. The goal of anomaly detection is to locate unusual or uncommon occurrences in data. Outlier detection, one of the most crucial data analysis jobs, has many practical uses. For instance, in order to track their company data and send out notifications for outliers, Yahoo and Microsoft have developed their own services for time-series outlier identification. However, majority of outlier identification methods employ classifications of unusual entries without providing any justification. Therefore, the goal is to make the anomalous points as predicted by the model more interpretable and thereby create a flagging system to help human labelers in determining anomalous behavior. This will help reduce human engineering efforts by a huge margin. |
---|---|
AbstractList | We present an end-end system for time series anomaly detection specifically aimed at detecting fraudulent transactions in bank transaction datasets. The goal of anomaly detection is to locate unusual or uncommon occurrences in data. Outlier detection, one of the most crucial data analysis jobs, has many practical uses. For instance, in order to track their company data and send out notifications for outliers, Yahoo and Microsoft have developed their own services for time-series outlier identification. However, majority of outlier identification methods employ classifications of unusual entries without providing any justification. Therefore, the goal is to make the anomalous points as predicted by the model more interpretable and thereby create a flagging system to help human labelers in determining anomalous behavior. This will help reduce human engineering efforts by a huge margin. |
Author | Bhat, Mohammad Qazim Nanda, Simran Goutham, Sevanthi Alex, Sini Anna |
Author_xml | – sequence: 1 givenname: Mohammad Qazim surname: Bhat fullname: Bhat, Mohammad Qazim email: mqazimbhat@gmail.com organization: Ramaiah Institute of Technology,Department of Computer Science & Engineering,Bengaluru,India – sequence: 2 givenname: Sini Anna surname: Alex fullname: Alex, Sini Anna email: sinialex@msrit.edu organization: Ramaiah Institute of Technology,Department of Computer Science & Engineering,Bengaluru,India – sequence: 3 givenname: Simran surname: Nanda fullname: Nanda, Simran email: simran9246@gmail.com organization: Ramaiah Institute of Technology,Department of Computer Science & Engineering,Bengaluru,India – sequence: 4 givenname: Sevanthi surname: Goutham fullname: Goutham, Sevanthi email: sevanthi201427@gmail.com organization: Ramaiah Institute of Technology,Department of Computer Science & Engineering,Bengaluru,India |
BookMark | eNo1j81Kw0AUhUfQhda-gci8QOK989O5syzxp4WCiHVdZpIbGEgmkkShb29AXZ1zNh_fuRGXecgsxD1CiQj-YW8q69BgqUCpEgGsc1pdiLV3nrQF7Z1x9lrQ21fo0hzm9M1ym0N3ntIkh3bpQ78s-cgz13MaskxZHlPP8p3HxNOtuGpDN_H6L1fi4_npWO2Kw-vLvtoeioTo58KTI9MyKaKm4UABXUSK5AGbEA1wbCwwuI2vN1TbsEiDVQ5ivcibutUrcffLTcx8-hxTH8bz6f-Q_gE8xUQf |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/I4C57141.2022.10057732 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Forestry |
EISBN | 9798350397475 |
EndPage | 253 |
ExternalDocumentID | 10057732 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i119t-98784fe8288ddea8a17b18b8901dab40ebd50e0769c68c5a57105270bc1414cf3 |
IEDL.DBID | RIE |
IngestDate | Thu Jan 18 11:14:46 EST 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i119t-98784fe8288ddea8a17b18b8901dab40ebd50e0769c68c5a57105270bc1414cf3 |
PageCount | 4 |
ParticipantIDs | ieee_primary_10057732 |
PublicationCentury | 2000 |
PublicationDate | 2022-Dec.-21 |
PublicationDateYYYYMMDD | 2022-12-21 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-Dec.-21 day: 21 |
PublicationDecade | 2020 |
PublicationTitle | 2022 4th International Conference on Circuits, Control, Communication and Computing (I4C) |
PublicationTitleAbbrev | I4C |
PublicationYear | 2022 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.8676709 |
Snippet | We present an end-end system for time series anomaly detection specifically aimed at detecting fraudulent transactions in bank transaction datasets. The goal... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 250 |
SubjectTerms | alert system anomaly detection automated machine learning data mining Ergonomics Feature extraction Forestry interpretable machine learning payment fraud detection Prediction algorithms Predictive models Time series analysis unsupervised learning Weather forecasting |
Title | Qualitative Analysis of Anomaly Detection in Time Series |
URI | https://ieeexplore.ieee.org/document/10057732 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoB8TEq4i3PLC62IkTn-c-VBaEBEhsVeycpQ4kiKb_v2f3gRgYmGxHkSJfdD6ffd_3MfbgKOEK4EvhvI2QHK1EVealKNFprYMLmPRTZq_m-QPGk0iTI_ZYGERMxWc4jN10l1-3fhWPysjDaXdhclpxe8bCBqy1Rf0qaR-f9KgwSsesL8uGu5d_yaakqDE9_uf3TtjgB3_HX_aR5ZQdYHPGDqOKZpRmO2ewYb5InN18RyvC20D99pNGfIxdKrFq-KLhEeXB4ykYLgfsfTp5G83EVgJBLJSynbBgQAektAhoHaqgUsYpcEBRvK6clujqQqI0pfUl-KKi-csiM9J5soP2Ib9g_aZt8JJxS65sAzqpldeQ2aqg5NDQ9iinFoy7YoNogfnXhuVivpv89R_Pb9hRtHMs7cjULet33yu8Y71lvbpPP2YNAeyNew |
link.rule.ids | 310,311,782,786,791,792,798,27934,54767 |
linkProvider | IEEE |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgSMCJrYgdH7i62Inj5dxFrSgVEkXiVsXOROqBBNHm_xm7C-LAgZPtKFLkicbjsee9R8iDw4SrNF4x522A5EjBcpUqpsBJKUtXQtRPGb7qybvp9QNNDttiYQAgFp9BJ3TjXX5R-yYclaGH4-5Cp7ji7mVSK72Ca61xv4Lbx5HsZlrIkPclSWfz-i_hlBg3Bkf__OIxaf8g8OjLNrackB2oTsl-0NEM4mxnxKy4LyJrN90Qi9C6xH79gSPag2UssqrovKIB50HDORgs2uRt0J92h2wtgsDmQtgls0YbWQImRgZXotzkQjthnME4XuROcnBFxoFrZb0yPstx_jxLNHce7SB9mZ6TVlVXcEGoRWe2JTguhZcmsXmG6aHGDVKKrdHukrSDBWafK56L2WbyV388vycHw-nzeDYeTZ6uyWGweSj0SMQNaS2_Grglu4uiuYs_6Ruq1pDM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+4th+International+Conference+on+Circuits%2C+Control%2C+Communication+and+Computing+%28I4C%29&rft.atitle=Qualitative+Analysis+of+Anomaly+Detection+in+Time+Series&rft.au=Bhat%2C+Mohammad+Qazim&rft.au=Alex%2C+Sini+Anna&rft.au=Nanda%2C+Simran&rft.au=Goutham%2C+Sevanthi&rft.date=2022-12-21&rft.pub=IEEE&rft.spage=250&rft.epage=253&rft_id=info:doi/10.1109%2FI4C57141.2022.10057732&rft.externalDocID=10057732 |