Qualitative Analysis of Anomaly Detection in Time Series

We present an end-end system for time series anomaly detection specifically aimed at detecting fraudulent transactions in bank transaction datasets. The goal of anomaly detection is to locate unusual or uncommon occurrences in data. Outlier detection, one of the most crucial data analysis jobs, has...

Full description

Saved in:
Bibliographic Details
Published in:2022 4th International Conference on Circuits, Control, Communication and Computing (I4C) pp. 250 - 253
Main Authors: Bhat, Mohammad Qazim, Alex, Sini Anna, Nanda, Simran, Goutham, Sevanthi
Format: Conference Proceeding
Language:English
Published: IEEE 21-12-2022
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We present an end-end system for time series anomaly detection specifically aimed at detecting fraudulent transactions in bank transaction datasets. The goal of anomaly detection is to locate unusual or uncommon occurrences in data. Outlier detection, one of the most crucial data analysis jobs, has many practical uses. For instance, in order to track their company data and send out notifications for outliers, Yahoo and Microsoft have developed their own services for time-series outlier identification. However, majority of outlier identification methods employ classifications of unusual entries without providing any justification. Therefore, the goal is to make the anomalous points as predicted by the model more interpretable and thereby create a flagging system to help human labelers in determining anomalous behavior. This will help reduce human engineering efforts by a huge margin.
AbstractList We present an end-end system for time series anomaly detection specifically aimed at detecting fraudulent transactions in bank transaction datasets. The goal of anomaly detection is to locate unusual or uncommon occurrences in data. Outlier detection, one of the most crucial data analysis jobs, has many practical uses. For instance, in order to track their company data and send out notifications for outliers, Yahoo and Microsoft have developed their own services for time-series outlier identification. However, majority of outlier identification methods employ classifications of unusual entries without providing any justification. Therefore, the goal is to make the anomalous points as predicted by the model more interpretable and thereby create a flagging system to help human labelers in determining anomalous behavior. This will help reduce human engineering efforts by a huge margin.
Author Bhat, Mohammad Qazim
Nanda, Simran
Goutham, Sevanthi
Alex, Sini Anna
Author_xml – sequence: 1
  givenname: Mohammad Qazim
  surname: Bhat
  fullname: Bhat, Mohammad Qazim
  email: mqazimbhat@gmail.com
  organization: Ramaiah Institute of Technology,Department of Computer Science & Engineering,Bengaluru,India
– sequence: 2
  givenname: Sini Anna
  surname: Alex
  fullname: Alex, Sini Anna
  email: sinialex@msrit.edu
  organization: Ramaiah Institute of Technology,Department of Computer Science & Engineering,Bengaluru,India
– sequence: 3
  givenname: Simran
  surname: Nanda
  fullname: Nanda, Simran
  email: simran9246@gmail.com
  organization: Ramaiah Institute of Technology,Department of Computer Science & Engineering,Bengaluru,India
– sequence: 4
  givenname: Sevanthi
  surname: Goutham
  fullname: Goutham, Sevanthi
  email: sevanthi201427@gmail.com
  organization: Ramaiah Institute of Technology,Department of Computer Science & Engineering,Bengaluru,India
BookMark eNo1j81Kw0AUhUfQhda-gci8QOK989O5syzxp4WCiHVdZpIbGEgmkkShb29AXZ1zNh_fuRGXecgsxD1CiQj-YW8q69BgqUCpEgGsc1pdiLV3nrQF7Z1x9lrQ21fo0hzm9M1ym0N3ntIkh3bpQ78s-cgz13MaskxZHlPP8p3HxNOtuGpDN_H6L1fi4_npWO2Kw-vLvtoeioTo58KTI9MyKaKm4UABXUSK5AGbEA1wbCwwuI2vN1TbsEiDVQ5ivcibutUrcffLTcx8-hxTH8bz6f-Q_gE8xUQf
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/I4C57141.2022.10057732
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Forestry
EISBN 9798350397475
EndPage 253
ExternalDocumentID 10057732
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-98784fe8288ddea8a17b18b8901dab40ebd50e0769c68c5a57105270bc1414cf3
IEDL.DBID RIE
IngestDate Thu Jan 18 11:14:46 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-98784fe8288ddea8a17b18b8901dab40ebd50e0769c68c5a57105270bc1414cf3
PageCount 4
ParticipantIDs ieee_primary_10057732
PublicationCentury 2000
PublicationDate 2022-Dec.-21
PublicationDateYYYYMMDD 2022-12-21
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-Dec.-21
  day: 21
PublicationDecade 2020
PublicationTitle 2022 4th International Conference on Circuits, Control, Communication and Computing (I4C)
PublicationTitleAbbrev I4C
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8676709
Snippet We present an end-end system for time series anomaly detection specifically aimed at detecting fraudulent transactions in bank transaction datasets. The goal...
SourceID ieee
SourceType Publisher
StartPage 250
SubjectTerms alert system
anomaly detection
automated machine learning
data mining
Ergonomics
Feature extraction
Forestry
interpretable machine learning
payment fraud detection
Prediction algorithms
Predictive models
Time series analysis
unsupervised learning
Weather forecasting
Title Qualitative Analysis of Anomaly Detection in Time Series
URI https://ieeexplore.ieee.org/document/10057732
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoB8TEq4i3PLC62IkTn-c-VBaEBEhsVeycpQ4kiKb_v2f3gRgYmGxHkSJfdD6ffd_3MfbgKOEK4EvhvI2QHK1EVealKNFprYMLmPRTZq_m-QPGk0iTI_ZYGERMxWc4jN10l1-3fhWPysjDaXdhclpxe8bCBqy1Rf0qaR-f9KgwSsesL8uGu5d_yaakqDE9_uf3TtjgB3_HX_aR5ZQdYHPGDqOKZpRmO2ewYb5InN18RyvC20D99pNGfIxdKrFq-KLhEeXB4ykYLgfsfTp5G83EVgJBLJSynbBgQAektAhoHaqgUsYpcEBRvK6clujqQqI0pfUl-KKi-csiM9J5soP2Ib9g_aZt8JJxS65sAzqpldeQ2aqg5NDQ9iinFoy7YoNogfnXhuVivpv89R_Pb9hRtHMs7cjULet33yu8Y71lvbpPP2YNAeyNew
link.rule.ids 310,311,782,786,791,792,798,27934,54767
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgSMCJrYgdH7i62Inj5dxFrSgVEkXiVsXOROqBBNHm_xm7C-LAgZPtKFLkicbjsee9R8iDw4SrNF4x522A5EjBcpUqpsBJKUtXQtRPGb7qybvp9QNNDttiYQAgFp9BJ3TjXX5R-yYclaGH4-5Cp7ji7mVSK72Ca61xv4Lbx5HsZlrIkPclSWfz-i_hlBg3Bkf__OIxaf8g8OjLNrackB2oTsl-0NEM4mxnxKy4LyJrN90Qi9C6xH79gSPag2UssqrovKIB50HDORgs2uRt0J92h2wtgsDmQtgls0YbWQImRgZXotzkQjthnME4XuROcnBFxoFrZb0yPstx_jxLNHce7SB9mZ6TVlVXcEGoRWe2JTguhZcmsXmG6aHGDVKKrdHukrSDBWafK56L2WbyV388vycHw-nzeDYeTZ6uyWGweSj0SMQNaS2_Grglu4uiuYs_6Ruq1pDM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+4th+International+Conference+on+Circuits%2C+Control%2C+Communication+and+Computing+%28I4C%29&rft.atitle=Qualitative+Analysis+of+Anomaly+Detection+in+Time+Series&rft.au=Bhat%2C+Mohammad+Qazim&rft.au=Alex%2C+Sini+Anna&rft.au=Nanda%2C+Simran&rft.au=Goutham%2C+Sevanthi&rft.date=2022-12-21&rft.pub=IEEE&rft.spage=250&rft.epage=253&rft_id=info:doi/10.1109%2FI4C57141.2022.10057732&rft.externalDocID=10057732