SwiftSpike: An Efficient Software Framework for the Development of Spiking Neural Networks
Spiking Neural Networks (SNNs) are Machine Learning (ML) algorithms that use sparse, binary, event-driven spikes to propagate information through the network. Coupled with physical neuromorphic processors, SNNs are more energy efficient compared to matrix-based Artificial Neural Network (ANN) soluti...
Saved in:
Published in: | 2023 IEEE International Conference on Omni-layer Intelligent Systems (COINS) pp. 1 - 6 |
---|---|
Main Authors: | , , |
Format: | Conference Proceeding |
Language: | English |
Published: |
IEEE
23-07-2023
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Spiking Neural Networks (SNNs) are Machine Learning (ML) algorithms that use sparse, binary, event-driven spikes to propagate information through the network. Coupled with physical neuromorphic processors, SNNs are more energy efficient compared to matrix-based Artificial Neural Network (ANN) solutions, making them well-suited to resource-constrained Internet of Things (IoT) applications that have strict power and local processing requirements. SNN algorithms still require further research to improve their accuracy and allow them to compete with ANNs but their development is hampered by a lack of fast, modular software and simulation frameworks. In this work we present SwiftSpike, an efficient, customisable SNN development framework written in C++ that supports user-defined neuron and synapse models. We validate SwiftSpike against the widely used Brian 2 framework and demonstrate speed-ups of 17.3x on an unsupervised image recognition task trained with Spike-Timing-Dependent Plasticity (STDP). |
---|---|
AbstractList | Spiking Neural Networks (SNNs) are Machine Learning (ML) algorithms that use sparse, binary, event-driven spikes to propagate information through the network. Coupled with physical neuromorphic processors, SNNs are more energy efficient compared to matrix-based Artificial Neural Network (ANN) solutions, making them well-suited to resource-constrained Internet of Things (IoT) applications that have strict power and local processing requirements. SNN algorithms still require further research to improve their accuracy and allow them to compete with ANNs but their development is hampered by a lack of fast, modular software and simulation frameworks. In this work we present SwiftSpike, an efficient, customisable SNN development framework written in C++ that supports user-defined neuron and synapse models. We validate SwiftSpike against the widely used Brian 2 framework and demonstrate speed-ups of 17.3x on an unsupervised image recognition task trained with Spike-Timing-Dependent Plasticity (STDP). |
Author | Ippolito, Samuel J. Matthews, Glenn I. Fahey, Genevieve Claire |
Author_xml | – sequence: 1 givenname: Genevieve Claire orcidid: 0009-0000-0753-3553 surname: Fahey fullname: Fahey, Genevieve Claire organization: School of Engineering, RMIT University,Melbourne,Australia – sequence: 2 givenname: Samuel J. surname: Ippolito fullname: Ippolito, Samuel J. email: samuel.ippolito@rmit.edu.au organization: School of Engineering, RMIT University,Melbourne,Australia – sequence: 3 givenname: Glenn I. surname: Matthews fullname: Matthews, Glenn I. email: glenn.matthews@rmit.edu.au organization: School of Engineering, RMIT University,Melbourne,Australia |
BookMark | eNo1j7FOwzAURY0EA5T-AYN_IMHOc-yYrQotrVS1Q2BhqdzkGawmceQaIv4eImA6y7lHujfksvc9EkI5Szln-r7cb3ZVropcphnLIOWMF5prdUHmWukCcgZCCgXX5LUanY3V4E74QBc9XVrraod9pJW3cTQB6SqYDkcfTtT6QOM70kf8xNYP3aR5S6e169_oDj-CaX8QJ_t8S66sac84_-OMvKyWz-U62e6fNuVimzjOdUxkA1whl6jqGizjAhstmEU0jahzVFqqRsijAOAGagFNfYRMobFG5lpjATNy99t1iHgYgutM-Dr8X4Zv-ddSbg |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/COINS57856.2023.10189197 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9798350346473 |
EndPage | 6 |
ExternalDocumentID | 10189197 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i119t-6d317e16e7cc3f014ed940feead4c5e7967d46b4331a3c43dcb327eafa6599e83 |
IEDL.DBID | RIE |
IngestDate | Thu Jan 18 11:13:14 EST 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i119t-6d317e16e7cc3f014ed940feead4c5e7967d46b4331a3c43dcb327eafa6599e83 |
ORCID | 0009-0000-0753-3553 |
PageCount | 6 |
ParticipantIDs | ieee_primary_10189197 |
PublicationCentury | 2000 |
PublicationDate | 2023-July-23 |
PublicationDateYYYYMMDD | 2023-07-23 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-July-23 day: 23 |
PublicationDecade | 2020 |
PublicationTitle | 2023 IEEE International Conference on Omni-layer Intelligent Systems (COINS) |
PublicationTitleAbbrev | COINS |
PublicationYear | 2023 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.8907614 |
Snippet | Spiking Neural Networks (SNNs) are Machine Learning (ML) algorithms that use sparse, binary, event-driven spikes to propagate information through the network.... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Artificial neural networks C++ languages Image recognition Internet of Things machine learning neuromorphic computing Neurons Software software framework spiking neural networks Training |
Title | SwiftSpike: An Efficient Software Framework for the Development of Spiking Neural Networks |
URI | https://ieeexplore.ieee.org/document/10189197 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxFA62J08qjriTg9e0M5PJJPEmtaUnFUZBvJRM8gJFmZYu9O-blzpVDx48JYQs8LK8LN_3hZCbMrcWhKiZ0MqzInh0pnMPYcbLVHqQwkSS2LiSD6_qfogyOWzHhQGACD6DHkbjW76b2TVelfVRXUpnWnZIR2q1JWu16JxU9weP4cCL4i0IPch5r83-6-OU6DdGB_9s8ZAk3ww8-rTzLUdkD5pj8lZtpn5VzafvcEvvGjqM8g-hAlqFxXRjFkBHLdaKhs0oDZs7-gMVRGeeYulQI0VRDvMRgogCXybkZTR8HozZ198IbJplesVKFxw_ZCVIa7kP5xxwukg9hIFRWAFSl9IVZY18KMNtwZ2teS7BeFMKrUHxE9JtZg2cEmpzw2uuvJMo3ietwlkNThpVGG0zcUYSNMxkvpW_mLQ2Of8j_YLso_nxAjTnl6S7WqzhinSWbn0de-wTw0SZAA |
link.rule.ids | 310,311,782,786,791,792,798,27934,54767 |
linkProvider | IEEE |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LTgMhFCW2LnSlxhrfsnBL2xkGGNyZ2qbGWk2mJsZNw8AlaTQzTR_p7wvUqbpw4QpCwiUBLpfHOQeErnmsNTCWEyZTSxIX0YmMLTiPF21hQTAVSGL9TAxf07uul8khGy4MAATwGTR9Nrzlm1Iv_VVZy6tLyUiKGtpmieBiTdeq8Dlt2eo8uSOvl2_x4IOYNqsKv75OCZGjt_fPNvdR45uDh5830eUAbUFxiN6y1cQusunkHW7wbYG7QQDCGcCZW05Xaga4V6GtsNuOYre9wz9wQbi02Nd2FrGX5VAfLgk48HkDvfS6o06ffP2OQCZRJBeEGxf6IeIgtKbWnXTAyKRtwU2NRDMQkguT8NwzohTVCTU6p7EAZRVnUkJKj1C9KAs4RljHiuY0tUZ4-T6hU-_XYIRKEyV1xE5Qw3fMeLoWwBhXfXL6R_kV2umPHgfjwf3w4Qzt-qHw16ExPUf1xWwJF6g2N8vLMHqf_4ScUQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+IEEE+International+Conference+on+Omni-layer+Intelligent+Systems+%28COINS%29&rft.atitle=SwiftSpike%3A+An+Efficient+Software+Framework+for+the+Development+of+Spiking+Neural+Networks&rft.au=Fahey%2C+Genevieve+Claire&rft.au=Ippolito%2C+Samuel+J.&rft.au=Matthews%2C+Glenn+I.&rft.date=2023-07-23&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FCOINS57856.2023.10189197&rft.externalDocID=10189197 |