SwiftSpike: An Efficient Software Framework for the Development of Spiking Neural Networks

Spiking Neural Networks (SNNs) are Machine Learning (ML) algorithms that use sparse, binary, event-driven spikes to propagate information through the network. Coupled with physical neuromorphic processors, SNNs are more energy efficient compared to matrix-based Artificial Neural Network (ANN) soluti...

Full description

Saved in:
Bibliographic Details
Published in:2023 IEEE International Conference on Omni-layer Intelligent Systems (COINS) pp. 1 - 6
Main Authors: Fahey, Genevieve Claire, Ippolito, Samuel J., Matthews, Glenn I.
Format: Conference Proceeding
Language:English
Published: IEEE 23-07-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Spiking Neural Networks (SNNs) are Machine Learning (ML) algorithms that use sparse, binary, event-driven spikes to propagate information through the network. Coupled with physical neuromorphic processors, SNNs are more energy efficient compared to matrix-based Artificial Neural Network (ANN) solutions, making them well-suited to resource-constrained Internet of Things (IoT) applications that have strict power and local processing requirements. SNN algorithms still require further research to improve their accuracy and allow them to compete with ANNs but their development is hampered by a lack of fast, modular software and simulation frameworks. In this work we present SwiftSpike, an efficient, customisable SNN development framework written in C++ that supports user-defined neuron and synapse models. We validate SwiftSpike against the widely used Brian 2 framework and demonstrate speed-ups of 17.3x on an unsupervised image recognition task trained with Spike-Timing-Dependent Plasticity (STDP).
AbstractList Spiking Neural Networks (SNNs) are Machine Learning (ML) algorithms that use sparse, binary, event-driven spikes to propagate information through the network. Coupled with physical neuromorphic processors, SNNs are more energy efficient compared to matrix-based Artificial Neural Network (ANN) solutions, making them well-suited to resource-constrained Internet of Things (IoT) applications that have strict power and local processing requirements. SNN algorithms still require further research to improve their accuracy and allow them to compete with ANNs but their development is hampered by a lack of fast, modular software and simulation frameworks. In this work we present SwiftSpike, an efficient, customisable SNN development framework written in C++ that supports user-defined neuron and synapse models. We validate SwiftSpike against the widely used Brian 2 framework and demonstrate speed-ups of 17.3x on an unsupervised image recognition task trained with Spike-Timing-Dependent Plasticity (STDP).
Author Ippolito, Samuel J.
Matthews, Glenn I.
Fahey, Genevieve Claire
Author_xml – sequence: 1
  givenname: Genevieve Claire
  orcidid: 0009-0000-0753-3553
  surname: Fahey
  fullname: Fahey, Genevieve Claire
  organization: School of Engineering, RMIT University,Melbourne,Australia
– sequence: 2
  givenname: Samuel J.
  surname: Ippolito
  fullname: Ippolito, Samuel J.
  email: samuel.ippolito@rmit.edu.au
  organization: School of Engineering, RMIT University,Melbourne,Australia
– sequence: 3
  givenname: Glenn I.
  surname: Matthews
  fullname: Matthews, Glenn I.
  email: glenn.matthews@rmit.edu.au
  organization: School of Engineering, RMIT University,Melbourne,Australia
BookMark eNo1j7FOwzAURY0EA5T-AYN_IMHOc-yYrQotrVS1Q2BhqdzkGawmceQaIv4eImA6y7lHujfksvc9EkI5Szln-r7cb3ZVropcphnLIOWMF5prdUHmWukCcgZCCgXX5LUanY3V4E74QBc9XVrraod9pJW3cTQB6SqYDkcfTtT6QOM70kf8xNYP3aR5S6e169_oDj-CaX8QJ_t8S66sac84_-OMvKyWz-U62e6fNuVimzjOdUxkA1whl6jqGizjAhstmEU0jahzVFqqRsijAOAGagFNfYRMobFG5lpjATNy99t1iHgYgutM-Dr8X4Zv-ddSbg
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/COINS57856.2023.10189197
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350346473
EndPage 6
ExternalDocumentID 10189197
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-6d317e16e7cc3f014ed940feead4c5e7967d46b4331a3c43dcb327eafa6599e83
IEDL.DBID RIE
IngestDate Thu Jan 18 11:13:14 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-6d317e16e7cc3f014ed940feead4c5e7967d46b4331a3c43dcb327eafa6599e83
ORCID 0009-0000-0753-3553
PageCount 6
ParticipantIDs ieee_primary_10189197
PublicationCentury 2000
PublicationDate 2023-July-23
PublicationDateYYYYMMDD 2023-07-23
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-July-23
  day: 23
PublicationDecade 2020
PublicationTitle 2023 IEEE International Conference on Omni-layer Intelligent Systems (COINS)
PublicationTitleAbbrev COINS
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8907614
Snippet Spiking Neural Networks (SNNs) are Machine Learning (ML) algorithms that use sparse, binary, event-driven spikes to propagate information through the network....
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Artificial neural networks
C++ languages
Image recognition
Internet of Things
machine learning
neuromorphic computing
Neurons
Software
software framework
spiking neural networks
Training
Title SwiftSpike: An Efficient Software Framework for the Development of Spiking Neural Networks
URI https://ieeexplore.ieee.org/document/10189197
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxFA62J08qjriTg9e0M5PJJPEmtaUnFUZBvJRM8gJFmZYu9O-blzpVDx48JYQs8LK8LN_3hZCbMrcWhKiZ0MqzInh0pnMPYcbLVHqQwkSS2LiSD6_qfogyOWzHhQGACD6DHkbjW76b2TVelfVRXUpnWnZIR2q1JWu16JxU9weP4cCL4i0IPch5r83-6-OU6DdGB_9s8ZAk3ww8-rTzLUdkD5pj8lZtpn5VzafvcEvvGjqM8g-hAlqFxXRjFkBHLdaKhs0oDZs7-gMVRGeeYulQI0VRDvMRgogCXybkZTR8HozZ198IbJplesVKFxw_ZCVIa7kP5xxwukg9hIFRWAFSl9IVZY18KMNtwZ2teS7BeFMKrUHxE9JtZg2cEmpzw2uuvJMo3ietwlkNThpVGG0zcUYSNMxkvpW_mLQ2Of8j_YLso_nxAjTnl6S7WqzhinSWbn0de-wTw0SZAA
link.rule.ids 310,311,782,786,791,792,798,27934,54767
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LTgMhFCW2LnSlxhrfsnBL2xkGGNyZ2qbGWk2mJsZNw8AlaTQzTR_p7wvUqbpw4QpCwiUBLpfHOQeErnmsNTCWEyZTSxIX0YmMLTiPF21hQTAVSGL9TAxf07uul8khGy4MAATwGTR9Nrzlm1Iv_VVZy6tLyUiKGtpmieBiTdeq8Dlt2eo8uSOvl2_x4IOYNqsKv75OCZGjt_fPNvdR45uDh5830eUAbUFxiN6y1cQusunkHW7wbYG7QQDCGcCZW05Xaga4V6GtsNuOYre9wz9wQbi02Nd2FrGX5VAfLgk48HkDvfS6o06ffP2OQCZRJBeEGxf6IeIgtKbWnXTAyKRtwU2NRDMQkguT8NwzohTVCTU6p7EAZRVnUkJKj1C9KAs4RljHiuY0tUZ4-T6hU-_XYIRKEyV1xE5Qw3fMeLoWwBhXfXL6R_kV2umPHgfjwf3w4Qzt-qHw16ExPUf1xWwJF6g2N8vLMHqf_4ScUQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+IEEE+International+Conference+on+Omni-layer+Intelligent+Systems+%28COINS%29&rft.atitle=SwiftSpike%3A+An+Efficient+Software+Framework+for+the+Development+of+Spiking+Neural+Networks&rft.au=Fahey%2C+Genevieve+Claire&rft.au=Ippolito%2C+Samuel+J.&rft.au=Matthews%2C+Glenn+I.&rft.date=2023-07-23&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FCOINS57856.2023.10189197&rft.externalDocID=10189197