Deep learning acceleration at the resource-constrained tactical edge

This paper outlines how we modified the torch2trt library which allowed us to build a recursive framework that can quantize previously unsupported PyTorch models. The framework partitions the PyTorch model into supported and unsupported modules, and then rebuilds the PyTorch model by replacing the s...

Full description

Saved in:
Bibliographic Details
Published in:2023 IEEE International Conference on Big Data (BigData) pp. 3857 - 3862
Main Authors: Geerhart, Billy, Dasari, Venkat R., Wang, Peng, Rapp, Brian
Format: Conference Proceeding
Language:English
Published: IEEE 15-12-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper outlines how we modified the torch2trt library which allowed us to build a recursive framework that can quantize previously unsupported PyTorch models. The framework partitions the PyTorch model into supported and unsupported modules, and then rebuilds the PyTorch model by replacing the supported PyTorch modules with faster TensorRT modules. The framework allows us to optimize and deploy more advanced Deep Neural Network algorithms that are not natively supported by torch2trt.
AbstractList This paper outlines how we modified the torch2trt library which allowed us to build a recursive framework that can quantize previously unsupported PyTorch models. The framework partitions the PyTorch model into supported and unsupported modules, and then rebuilds the PyTorch model by replacing the supported PyTorch modules with faster TensorRT modules. The framework allows us to optimize and deploy more advanced Deep Neural Network algorithms that are not natively supported by torch2trt.
Author Wang, Peng
Dasari, Venkat R.
Rapp, Brian
Geerhart, Billy
Author_xml – sequence: 1
  givenname: Billy
  surname: Geerhart
  fullname: Geerhart, Billy
  email: billy.e.geerhart2.civ@army.mil
  organization: DEVCOM Army Research Laboratory Aberdeen Proving Ground,MD,USA
– sequence: 2
  givenname: Venkat R.
  surname: Dasari
  fullname: Dasari, Venkat R.
  email: venkateswara.r.dasari.civ@army.mil
  organization: DEVCOM ARL Army Research Office Aberdeen Proving Ground,MD,USA
– sequence: 3
  givenname: Peng
  surname: Wang
  fullname: Wang, Peng
  email: peng.wang2.civ@army.mil
  organization: DEVCOM Army Research Laboratory Aberdeen Proving Ground,MD,USA
– sequence: 4
  givenname: Brian
  surname: Rapp
  fullname: Rapp, Brian
  email: brian.m.rapp2.civ@army.mil
  organization: DEVCOM Army Research Laboratory Aberdeen Proving Ground,MD,USA
BookMark eNo1z71OwzAUQGEjwQClb8BgsSf4N_EdoYGCVIkF5urGvg6WglM5ZuDtGYDpbJ90rth5XjIxditFK6WAu4c0DVjRgjCmVULpVgrtOue6M7aFHpy2QitjbH_JhoHoxGfCklOeOHpPMxWsackcK68fxAuty1fx1Pglr7VgyhR4RV-Tx5lTmOiaXUScV9r-dcPenx7fds_N4XX_srs_NElKqI0NDqOII1oEsga8Vj5iALDR4mgijk5EJOxkp0UgFb0MBiM512vVG9AbdvPrJiI6nkr6xPJ9_J_TP8HMTIs
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/BigData59044.2023.10386886
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350324457
EndPage 3862
ExternalDocumentID 10386886
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-5d8af0fba5a9e549c32cfad995f5ab4fab80faea61630de2fc1d4afe887327493
IEDL.DBID RIE
IngestDate Wed Oct 02 05:56:45 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-5d8af0fba5a9e549c32cfad995f5ab4fab80faea61630de2fc1d4afe887327493
PageCount 6
ParticipantIDs ieee_primary_10386886
PublicationCentury 2000
PublicationDate 2023-Dec.-15
PublicationDateYYYYMMDD 2023-12-15
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-Dec.-15
  day: 15
PublicationDecade 2020
PublicationTitle 2023 IEEE International Conference on Big Data (BigData)
PublicationTitleAbbrev BigData
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.9064722
Snippet This paper outlines how we modified the torch2trt library which allowed us to build a recursive framework that can quantize previously unsupported PyTorch...
SourceID ieee
SourceType Publisher
StartPage 3857
SubjectTerms Artificial neural networks
Computational efficiency
Computational modeling
computer vision
deep neural networks
inference acceleration
Libraries
Memory management
model reduction
Partitioning algorithms
PyTorch
quantization
Quantization (signal)
Title Deep learning acceleration at the resource-constrained tactical edge
URI https://ieeexplore.ieee.org/document/10386886
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA62J08qVnyTg9e0-8omueq29CSCCt7KbGZSCtKWuv3_ZrbbigcP3kIghMzAvDLzfUI8INkyD9qqaH-DYggtZSmgotpgXniDWcvWMH01zx-2GjNMjjrMwhBR23xGQ162f_m48lsulY0YzLu0tuyJnnF2N6zVAYmmiRs9LuYVNKBdUnC1JMuH-wO_qFNazzE5-eedp2LwM4MnXw7e5Uwc0fJcVBXRWnZMD3MJ3kevsdOhhEbGYE5uunq88hz5MQEEoWzaUSj4lFw9G4j3yfjtaao6HgS1SFPXKI0WQhJq0OAo5nM-z3wAdE4HDXURoLZJAIIyxlYJUhZ8igUEivYjj0mnyy9Ef7la0qWQxiEag750mBVGR0NdFglYD0w5Xzt3JQYsgtl6B3Ux27_--o_9G3HMgub-jlTfin6z2dKd6H3h9r7Vzjf8sZQz
link.rule.ids 310,311,782,786,791,792,798,27934,54767
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA62HvSkYsW3OXhNu69skqu2pWItghW8ldnMpBSkLXX7_02224oHD95CIITMwLwy832M3SPpPHVSC29_nQgQWkKTQ0GFwjSzCpOKrWHwpkYfutsLMDliNwtDRFXzGbXDsvrLx4Vdh1JZJ4B551rnDbYvM5WrzbhWDSUaR6bzMJt2oQRpoizUS5K0vT3yizyl8h39o3_eesxaP1N4_HXnX07YHs1PWbdLtOQ118OUg7Xeb2y0yKHkPpzjq7oiL2yI_QIFBCEvq2Eo-OShftZi7_3e-HEgaiYEMYtjUwqJGlzkCpBgyGd0Nk2sAzRGOglF5qDQkQOC3EdXEVLibIwZOPIWJPVpp0nPWHO-mNM548ogKoU2N5hkSnpTnWcRaAuBdL4w5oK1gggmyw3YxWT7-ss_9u_YwWD8MpwMn0bPV-wwCD10e8TymjXL1ZpuWOML17eVpr4B-X2XhA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+IEEE+International+Conference+on+Big+Data+%28BigData%29&rft.atitle=Deep+learning+acceleration+at+the+resource-constrained+tactical+edge&rft.au=Geerhart%2C+Billy&rft.au=Dasari%2C+Venkat+R.&rft.au=Wang%2C+Peng&rft.au=Rapp%2C+Brian&rft.date=2023-12-15&rft.pub=IEEE&rft.spage=3857&rft.epage=3862&rft_id=info:doi/10.1109%2FBigData59044.2023.10386886&rft.externalDocID=10386886