Deep learning acceleration at the resource-constrained tactical edge
This paper outlines how we modified the torch2trt library which allowed us to build a recursive framework that can quantize previously unsupported PyTorch models. The framework partitions the PyTorch model into supported and unsupported modules, and then rebuilds the PyTorch model by replacing the s...
Saved in:
Published in: | 2023 IEEE International Conference on Big Data (BigData) pp. 3857 - 3862 |
---|---|
Main Authors: | , , , |
Format: | Conference Proceeding |
Language: | English |
Published: |
IEEE
15-12-2023
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | This paper outlines how we modified the torch2trt library which allowed us to build a recursive framework that can quantize previously unsupported PyTorch models. The framework partitions the PyTorch model into supported and unsupported modules, and then rebuilds the PyTorch model by replacing the supported PyTorch modules with faster TensorRT modules. The framework allows us to optimize and deploy more advanced Deep Neural Network algorithms that are not natively supported by torch2trt. |
---|---|
AbstractList | This paper outlines how we modified the torch2trt library which allowed us to build a recursive framework that can quantize previously unsupported PyTorch models. The framework partitions the PyTorch model into supported and unsupported modules, and then rebuilds the PyTorch model by replacing the supported PyTorch modules with faster TensorRT modules. The framework allows us to optimize and deploy more advanced Deep Neural Network algorithms that are not natively supported by torch2trt. |
Author | Wang, Peng Dasari, Venkat R. Rapp, Brian Geerhart, Billy |
Author_xml | – sequence: 1 givenname: Billy surname: Geerhart fullname: Geerhart, Billy email: billy.e.geerhart2.civ@army.mil organization: DEVCOM Army Research Laboratory Aberdeen Proving Ground,MD,USA – sequence: 2 givenname: Venkat R. surname: Dasari fullname: Dasari, Venkat R. email: venkateswara.r.dasari.civ@army.mil organization: DEVCOM ARL Army Research Office Aberdeen Proving Ground,MD,USA – sequence: 3 givenname: Peng surname: Wang fullname: Wang, Peng email: peng.wang2.civ@army.mil organization: DEVCOM Army Research Laboratory Aberdeen Proving Ground,MD,USA – sequence: 4 givenname: Brian surname: Rapp fullname: Rapp, Brian email: brian.m.rapp2.civ@army.mil organization: DEVCOM Army Research Laboratory Aberdeen Proving Ground,MD,USA |
BookMark | eNo1z71OwzAUQGEjwQClb8BgsSf4N_EdoYGCVIkF5urGvg6WglM5ZuDtGYDpbJ90rth5XjIxditFK6WAu4c0DVjRgjCmVULpVgrtOue6M7aFHpy2QitjbH_JhoHoxGfCklOeOHpPMxWsackcK68fxAuty1fx1Pglr7VgyhR4RV-Tx5lTmOiaXUScV9r-dcPenx7fds_N4XX_srs_NElKqI0NDqOII1oEsga8Vj5iALDR4mgijk5EJOxkp0UgFb0MBiM512vVG9AbdvPrJiI6nkr6xPJ9_J_TP8HMTIs |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/BigData59044.2023.10386886 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9798350324457 |
EndPage | 3862 |
ExternalDocumentID | 10386886 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i119t-5d8af0fba5a9e549c32cfad995f5ab4fab80faea61630de2fc1d4afe887327493 |
IEDL.DBID | RIE |
IngestDate | Wed Oct 02 05:56:45 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i119t-5d8af0fba5a9e549c32cfad995f5ab4fab80faea61630de2fc1d4afe887327493 |
PageCount | 6 |
ParticipantIDs | ieee_primary_10386886 |
PublicationCentury | 2000 |
PublicationDate | 2023-Dec.-15 |
PublicationDateYYYYMMDD | 2023-12-15 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-Dec.-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | 2023 IEEE International Conference on Big Data (BigData) |
PublicationTitleAbbrev | BigData |
PublicationYear | 2023 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.9064722 |
Snippet | This paper outlines how we modified the torch2trt library which allowed us to build a recursive framework that can quantize previously unsupported PyTorch... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 3857 |
SubjectTerms | Artificial neural networks Computational efficiency Computational modeling computer vision deep neural networks inference acceleration Libraries Memory management model reduction Partitioning algorithms PyTorch quantization Quantization (signal) |
Title | Deep learning acceleration at the resource-constrained tactical edge |
URI | https://ieeexplore.ieee.org/document/10386886 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA62J08qVnyTg9e0-8omueq29CSCCt7KbGZSCtKWuv3_ZrbbigcP3kIghMzAvDLzfUI8INkyD9qqaH-DYggtZSmgotpgXniDWcvWMH01zx-2GjNMjjrMwhBR23xGQ162f_m48lsulY0YzLu0tuyJnnF2N6zVAYmmiRs9LuYVNKBdUnC1JMuH-wO_qFNazzE5-eedp2LwM4MnXw7e5Uwc0fJcVBXRWnZMD3MJ3kevsdOhhEbGYE5uunq88hz5MQEEoWzaUSj4lFw9G4j3yfjtaao6HgS1SFPXKI0WQhJq0OAo5nM-z3wAdE4HDXURoLZJAIIyxlYJUhZ8igUEivYjj0mnyy9Ef7la0qWQxiEag750mBVGR0NdFglYD0w5Xzt3JQYsgtl6B3Ux27_--o_9G3HMgub-jlTfin6z2dKd6H3h9r7Vzjf8sZQz |
link.rule.ids | 310,311,782,786,791,792,798,27934,54767 |
linkProvider | IEEE |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA62HvSkYsW3OXhNu69skqu2pWItghW8ldnMpBSkLXX7_02224oHD95CIITMwLwy832M3SPpPHVSC29_nQgQWkKTQ0GFwjSzCpOKrWHwpkYfutsLMDliNwtDRFXzGbXDsvrLx4Vdh1JZJ4B551rnDbYvM5WrzbhWDSUaR6bzMJt2oQRpoizUS5K0vT3yizyl8h39o3_eesxaP1N4_HXnX07YHs1PWbdLtOQ118OUg7Xeb2y0yKHkPpzjq7oiL2yI_QIFBCEvq2Eo-OShftZi7_3e-HEgaiYEMYtjUwqJGlzkCpBgyGd0Nk2sAzRGOglF5qDQkQOC3EdXEVLibIwZOPIWJPVpp0nPWHO-mNM548ogKoU2N5hkSnpTnWcRaAuBdL4w5oK1gggmyw3YxWT7-ss_9u_YwWD8MpwMn0bPV-wwCD10e8TymjXL1ZpuWOML17eVpr4B-X2XhA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+IEEE+International+Conference+on+Big+Data+%28BigData%29&rft.atitle=Deep+learning+acceleration+at+the+resource-constrained+tactical+edge&rft.au=Geerhart%2C+Billy&rft.au=Dasari%2C+Venkat+R.&rft.au=Wang%2C+Peng&rft.au=Rapp%2C+Brian&rft.date=2023-12-15&rft.pub=IEEE&rft.spage=3857&rft.epage=3862&rft_id=info:doi/10.1109%2FBigData59044.2023.10386886&rft.externalDocID=10386886 |