A Comparison of Multi Class Support Vector Machine vs Deep Convolutional Neural Network for Brain Tumor Classification

Multi SVM has long been one of the popular methods in classification, while DCNN has recently gained significant attention in image processing and pattern recognition. This research evaluates the effectiveness of Multi Class Support Vector Machine (M-SVM) and Deep Convolutional Neural Network (DCNN)...

Full description

Saved in:
Bibliographic Details
Published in:2023 International Seminar on Application for Technology of Information and Communication (iSemantic) pp. 358 - 363
Main Authors: Cahyo, Nur Ryan Dwi, Sari, Christy Atika, Rachmawanto, Eko Hari, Jatmoko, Cahaya, Al-Jawry, Rabei Raad Ali, Alkhafaji, Mohamed Ayad
Format: Conference Proceeding
Language:English
Published: IEEE 16-09-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Multi SVM has long been one of the popular methods in classification, while DCNN has recently gained significant attention in image processing and pattern recognition. This research evaluates the effectiveness of Multi Class Support Vector Machine (M-SVM) and Deep Convolutional Neural Network (DCNN) techniques in classifying brain tumors. A dataset of 2660 3D medical images with dimensions 227 x 227 x 3; including Glioma, Meningioma, and Pituitary tumors, has been partitioned into distinct sets for both training and testing purposes. DCNN approach achieves excellent accuracy in identifying tumor names, with a training accuracy of 97.8% and 100% success rate in 9 experiments. The Multi SVM method demonstrates relatively good accuracy, with training accuracies ranging from 70% to 90% based on different kernel functions. These findings provide valuable insights for selecting appropriate methods in brain tumor classification and encourage further exploration of hybrid Multi SVM-DCNN approaches to enhance accuracy and reliability.
AbstractList Multi SVM has long been one of the popular methods in classification, while DCNN has recently gained significant attention in image processing and pattern recognition. This research evaluates the effectiveness of Multi Class Support Vector Machine (M-SVM) and Deep Convolutional Neural Network (DCNN) techniques in classifying brain tumors. A dataset of 2660 3D medical images with dimensions 227 x 227 x 3; including Glioma, Meningioma, and Pituitary tumors, has been partitioned into distinct sets for both training and testing purposes. DCNN approach achieves excellent accuracy in identifying tumor names, with a training accuracy of 97.8% and 100% success rate in 9 experiments. The Multi SVM method demonstrates relatively good accuracy, with training accuracies ranging from 70% to 90% based on different kernel functions. These findings provide valuable insights for selecting appropriate methods in brain tumor classification and encourage further exploration of hybrid Multi SVM-DCNN approaches to enhance accuracy and reliability.
Author Cahyo, Nur Ryan Dwi
Sari, Christy Atika
Alkhafaji, Mohamed Ayad
Jatmoko, Cahaya
Rachmawanto, Eko Hari
Al-Jawry, Rabei Raad Ali
Author_xml – sequence: 1
  givenname: Nur Ryan Dwi
  surname: Cahyo
  fullname: Cahyo, Nur Ryan Dwi
  email: 111202012610@mhs.dinus.ac.id
  organization: University of Dian Nuswantoro,Department of Informatics Engineering,Semarang,Indonesia
– sequence: 2
  givenname: Christy Atika
  surname: Sari
  fullname: Sari, Christy Atika
  email: atika.sari@dsn.dinus.ac.id
  organization: University of Dian Nuswantoro,Study Program in Informatics Engineering,Semarang,Indonesia
– sequence: 3
  givenname: Eko Hari
  surname: Rachmawanto
  fullname: Rachmawanto, Eko Hari
  email: eko.hari@dsn.dinus.ac.id
  organization: University of Dian Nuswantoro,Study Program in Informatics Engineering,Semarang,Indonesia
– sequence: 4
  givenname: Cahaya
  surname: Jatmoko
  fullname: Jatmoko, Cahaya
  email: jatmoko14@dsn.dinus.ac.id
  organization: Northern Technical University,Department Computer Science,Semarang,Indonesia
– sequence: 5
  givenname: Rabei Raad Ali
  surname: Al-Jawry
  fullname: Al-Jawry, Rabei Raad Ali
  email: rabei@ntu.edu.iq
  organization: Northern Technical University,Department of Computer Engineering Technology,Mosul,Iraq
– sequence: 6
  givenname: Mohamed Ayad
  surname: Alkhafaji
  fullname: Alkhafaji, Mohamed Ayad
  email: mohammed.alkhafaji@nust.edu.iq
  organization: National University of Science and Technology,Department of Computer Sciece,DhiQar,Iraq
BookMark eNo1kDtPwzAUhY0EA4_-AwYPrC2-dp3mjiU8pRaGFtbKda6FRWJHjlPEv6cUmM4ZzvcN54wdhxiIsSsQEwCB135FrQnZW40FyIkUUk1ASNRKFUdshDMslRZKoQR9ynZzXsW2M8n3MfDo-HJosudVY_qer4auiynzN7I5Jr409t0H4rue3xJ1ezDsYjNkH4Np-DMN6RD5M6YP7vbATTI-8PXQ7vvB6J235md_wU6caXoa_eU5e72_W1eP48XLw1M1X4w9AObxVJY4I6BSSbt19baoNWkHUgqLxm0VTYUpaleoAmaAaCSCrjWiBlHa2oE6Z5e_Xk9Emy751qSvzf8d6hsjuF33
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/iSemantic59612.2023.10295336
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350339215
EndPage 363
ExternalDocumentID 10295336
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-42897e1e832cbfdb6d5e5f1220c9afb3e40a6df63617199a2915d5995108cdf13
IEDL.DBID RIE
IngestDate Wed Jan 10 09:28:11 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-42897e1e832cbfdb6d5e5f1220c9afb3e40a6df63617199a2915d5995108cdf13
PageCount 6
ParticipantIDs ieee_primary_10295336
PublicationCentury 2000
PublicationDate 2023-Sept.-16
PublicationDateYYYYMMDD 2023-09-16
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-Sept.-16
  day: 16
PublicationDecade 2020
PublicationTitle 2023 International Seminar on Application for Technology of Information and Communication (iSemantic)
PublicationTitleAbbrev iSemantic
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8968247
Snippet Multi SVM has long been one of the popular methods in classification, while DCNN has recently gained significant attention in image processing and pattern...
SourceID ieee
SourceType Publisher
StartPage 358
SubjectTerms Brain Tumor
Classification algorithms
Convolutional neural networks
Deep CNN
Image Classification
Machine Learning
Multi SVM
Support vector machines
Three-dimensional displays
Training
Training data
Transfer learning
Title A Comparison of Multi Class Support Vector Machine vs Deep Convolutional Neural Network for Brain Tumor Classification
URI https://ieeexplore.ieee.org/document/10295336
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVoB8QEiCKggG7o6lInjROP0A91ASG1ILbKH2epEk0r2vT343M_EAMDU6xITiJfrHu2373HWCs1xgWgannqcsu7WjseULXixKhRhc_yPEopjcb5y0fRH5BMDj_UwiBiJJ9hm5rxLN8tbEVbZWGGJ8SGlDVWy1WxLdY6Zq2dbubDbIzz8Dkzm6mQt9tkDN7ed_llnhJzx_D0n289Y42fKjx4PeSXc3aE5QXbPELvYB0ICw-xghaityWQRWeA0_Aet-LhORIlETYr6CMuQ8dys_vT9CeQLEe8RB44BPAKT-QXAZNqHtrxicQjiqFrsLfhYNIb8Z13Ap8JodY8rCpUjgLDhLXGOyNdhpkXSdKxSnuTYrejpfMyDQhGKKUTJTJH4mOiU1jnRXrJ6uWixCsG0rgAI4qwTpO2m7hUGSrnMSh1mimfZ9esQYM2XW7lMab78br5436TnVBoiHQh5C2rr78qvGO1lavuY0S_AS1IpFM
link.rule.ids 310,311,782,786,791,792,798,27936,54770
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFA1ugvqk4sRv87DXzKZtkuZR98HEbQib4ttokhsYuG64db_fJPsQH3zwqaGQtuQ23JPk3HMQqidKGQdUNUmM0CTNc0McqpbEM2pkZpkQQUqpOxSDj6zV9jI5ZFcLAwCBfAYN3wxn-WamS79V5mZ47NmQvIL2WSpEtC7XOkD1jXLmw2QIU_dBE82ky9wNbw3e2Hb6ZZ8Sskfn-J_vPUG1nzo8_LrLMKdoD4oztHrEzZ15IJ5ZHGpocXC3xN6k0wFq_B4243E_UCUBrxa4BTB3HYvV5l_LP7EX5giXwATHDr7iJ-8YgUfl1LXDEz2TKASvht467VGzSzbuCWRCqVwSt66QAii4KauVNYobBszSOI60zK1KII1ybixPHIahUuaxpMx4-TEaZdpYmpyjajEr4AJhrowDEplbqXGdxiaRyhf0KOB5wqQV7BLV_KCN52uBjPF2vK7-uH-PDrujfm_cex68XKMjHyZPwaD8BlWXXyXcosrClHchut_y7aee
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+International+Seminar+on+Application+for+Technology+of+Information+and+Communication+%28iSemantic%29&rft.atitle=A+Comparison+of+Multi+Class+Support+Vector+Machine+vs+Deep+Convolutional+Neural+Network+for+Brain+Tumor+Classification&rft.au=Cahyo%2C+Nur+Ryan+Dwi&rft.au=Sari%2C+Christy+Atika&rft.au=Rachmawanto%2C+Eko+Hari&rft.au=Jatmoko%2C+Cahaya&rft.date=2023-09-16&rft.pub=IEEE&rft.spage=358&rft.epage=363&rft_id=info:doi/10.1109%2FiSemantic59612.2023.10295336&rft.externalDocID=10295336