Federated Learning of Neural Network Models with Heterogeneous Structures

Federated learning trains a model on a centralized server using datasets distributed over a large number of edge devices. Applying federated learning ensures data privacy because it does not transfer local data from edge devices to the server. Existing federated learning algorithms assume that all d...

Full description

Saved in:
Bibliographic Details
Published in:2020 19th IEEE International Conference on Machine Learning and Applications (ICMLA) pp. 735 - 740
Main Authors: Thonglek, Kundjanasith, Takahashi, Keichi, Ichikawa, Kohei, Iida, Hajimu, Nakasan, Chawanat
Format: Conference Proceeding
Language:English
Published: IEEE 01-12-2020
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Federated learning trains a model on a centralized server using datasets distributed over a large number of edge devices. Applying federated learning ensures data privacy because it does not transfer local data from edge devices to the server. Existing federated learning algorithms assume that all deployed models share the same structure. However, it is often infeasible to distribute the same model to every edge device because of hardware limitations such as computing performance and storage space. This paper proposes a novel federated learning algorithm to aggregate information from multiple heterogeneous models. The proposed method uses weighted average ensemble to combine the outputs from each model. The weight for the ensemble is optimized using black box optimization methods. We evaluated the proposed method using diverse models and datasets and found that it can achieve comparable performance to conventional training using centralized datasets. Furthermore, we compared six different optimization methods to tune the weights for the weighted average ensemble and found that tree parzen estimator achieves the highest accuracy among the alternatives.
AbstractList Federated learning trains a model on a centralized server using datasets distributed over a large number of edge devices. Applying federated learning ensures data privacy because it does not transfer local data from edge devices to the server. Existing federated learning algorithms assume that all deployed models share the same structure. However, it is often infeasible to distribute the same model to every edge device because of hardware limitations such as computing performance and storage space. This paper proposes a novel federated learning algorithm to aggregate information from multiple heterogeneous models. The proposed method uses weighted average ensemble to combine the outputs from each model. The weight for the ensemble is optimized using black box optimization methods. We evaluated the proposed method using diverse models and datasets and found that it can achieve comparable performance to conventional training using centralized datasets. Furthermore, we compared six different optimization methods to tune the weights for the weighted average ensemble and found that tree parzen estimator achieves the highest accuracy among the alternatives.
Author Takahashi, Keichi
Nakasan, Chawanat
Ichikawa, Kohei
Iida, Hajimu
Thonglek, Kundjanasith
Author_xml – sequence: 1
  givenname: Kundjanasith
  surname: Thonglek
  fullname: Thonglek, Kundjanasith
  email: thonglek.kundjanasith.ti7@is.naist.jp
  organization: Nara Institute of Science and Technology,Nara,Japan
– sequence: 2
  givenname: Keichi
  surname: Takahashi
  fullname: Takahashi, Keichi
  email: keichi@is.naist.jp
  organization: Nara Institute of Science and Technology,Nara,Japan
– sequence: 3
  givenname: Kohei
  surname: Ichikawa
  fullname: Ichikawa, Kohei
  email: ichikawa@is.naist.jp
  organization: Nara Institute of Science and Technology,Nara,Japan
– sequence: 4
  givenname: Hajimu
  surname: Iida
  fullname: Iida, Hajimu
  email: iida@itc.naist.jp
  organization: Nara Institute of Science and Technology,Nara,Japan
– sequence: 5
  givenname: Chawanat
  surname: Nakasan
  fullname: Nakasan, Chawanat
  email: chawanat@staff.kanazawa-u.ac.jp
  organization: Kanazawa University,Japan
BookMark eNotjMFOg0AYBtdED7b6BMZkXwD8_2VZ2GNDrG1C9aCemwU-KhHBLEsa396aeprJHGYhLodxgBD3TDEz2YdtsStXKSurY0WKYiJWdCEWnKmcc51Rci22azTwLqCRJZwfuuEgx1Y-Y_auPyEcR_8pd2ODfpLHLnzIDQL8eMCAcZ7ka_BzHWaP6UZcta6fcPvPpXhfP74Vm6h8edoWqzLqmPMQwdaJyyk1Deu2qSxDkUHd_KlJbZWDM1I6U8YSVxY60YbMqaGtYVEnS3F3_nYA9t---3L-Z2-T1Citk18oVEor
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICMLA51294.2020.00120
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1728184703
9781728184708
EndPage 740
ExternalDocumentID 9356244
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i118t-e9c3a8056d14fdb91e206ecddb91659b8e17024726901b9e434606170efce9ec3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:27 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-e9c3a8056d14fdb91e206ecddb91659b8e17024726901b9e434606170efce9ec3
PageCount 6
ParticipantIDs ieee_primary_9356244
PublicationCentury 2000
PublicationDate 2020-Dec.
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-Dec.
PublicationDecade 2020
PublicationTitle 2020 19th IEEE International Conference on Machine Learning and Applications (ICMLA)
PublicationTitleAbbrev ICMLA
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7906355
Snippet Federated learning trains a model on a centralized server using datasets distributed over a large number of edge devices. Applying federated learning ensures...
SourceID ieee
SourceType Publisher
StartPage 735
SubjectTerms Collaborative work
Computational modeling
Decentralized dataset
Deep Neural Network
Ensemble learning
Federated learning
Neural networks
Optimization methods
Servers
Task analysis
Training
Title Federated Learning of Neural Network Models with Heterogeneous Structures
URI https://ieeexplore.ieee.org/document/9356244
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEB1sT55UWvGbPXh0bTbZzWaPUltaUBGq4K3sx0SE0gg1_9-dbagevHjKspeQScibmX3vDcC1svSXC4IrVRsuKYezQSLXsTawUilrk5B2ttBPb9X9hGxybnZaGERM5DO8pWU6yw-Nb6lVNjJFRGspe9DTptpqtTpRjsjMaD5-fLgj_KJWSU6MLUFTvH8NTUmYMT34390OYfgjvmPPO1g5gj1cD2A-JdOHmBcG1jmivrOmZmStYVfxkrjcjAabrTaMeqtsRjyXJn4eGGt7tkg2sW2srYfwOp28jGe8m4LAP2Ly_8XR-MJWMU8JQtbBGYF5VqIPtCyVcRUKHYFW5zRayhmUhSwpL8mw9mjQF8fQXzdrPAHmcu3jrjUqp2PczFmB6I3UztmQFf4UBhSG5efW6GLZReDs7-1z2Kc4b7kdF9CPD4KX0NuE9iq9mm93GJFu
link.rule.ids 310,311,782,786,791,792,798,27934,54767
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED3RMsAEqEV844GR0Dix43pEpVUq2gqpRWKrHPuCkKoEqfT_43OjwsDCFMtLlEuUd3d-7x3AnTT0l3M8krLUkaAczjiBkfK1gRFSGhOEtPlczd76T0OyybnfaWEQMZDP8IGW4Szf1XZDrbKeTj1aC9GCfSlUprZqrUaWw2PdGw-mk0dCMGqWJMTZ4jTH-9fYlIAao6P_3e8Yuj_yO_ayA5YT2MOqA-MR2T74zNCxxhP1ndUlI3MNs_KXwOZmNNpstWbUXWU5MV1q_4Ggr-7ZPBjFbnx13YXX0XAxyKNmDkL04dP_rwi1TU3fZyqOi9IVmmMSZ2gdLTOpiz5y5aFWJTRcqtAoUpFRZhJjaVGjTU-hXdUVngErEmX9rtEyoYPcuDAc0WqhisK4OLXn0KEwLD-3VhfLJgIXf2_fwkG-mE6Wk_Hs-RIOKeZbpscVtP1D4TW01m5zE17TN07nlL8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+19th+IEEE+International+Conference+on+Machine+Learning+and+Applications+%28ICMLA%29&rft.atitle=Federated+Learning+of+Neural+Network+Models+with+Heterogeneous+Structures&rft.au=Thonglek%2C+Kundjanasith&rft.au=Takahashi%2C+Keichi&rft.au=Ichikawa%2C+Kohei&rft.au=Iida%2C+Hajimu&rft.date=2020-12-01&rft.pub=IEEE&rft.spage=735&rft.epage=740&rft_id=info:doi/10.1109%2FICMLA51294.2020.00120&rft.externalDocID=9356244