Application of Deep Learning for Fig Fruit Detection in The Wild
This paper proposes an appropriate detection approach based on a deep learning methodology to accomplish fast and effective detection and localization of fig fruits in complicated environmental pictures, e.g., in the wild. A dataset is manually created by first taking pictures of fig fruits in their...
Saved in:
Published in: | 2022 2nd International Conference on Emerging Smart Technologies and Applications (eSmarTA) pp. 1 - 6 |
---|---|
Main Authors: | , , , , , |
Format: | Conference Proceeding |
Language: | English |
Published: |
IEEE
25-10-2022
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | This paper proposes an appropriate detection approach based on a deep learning methodology to accomplish fast and effective detection and localization of fig fruits in complicated environmental pictures, e.g., in the wild. A dataset is manually created by first taking pictures of fig fruits in their natural environment and then annotating them with the label "buah tin." The augmentation technique was then employed to prevent overfitting during the training phase. Thus, the dataset can be split into 30% for testing and 70% for training. The YOLOv3 and YOLOv4 one-stage detection deep learning models will be used in the Phyton environment with Google Colaboratory for this research. The experimental outcomes indicated that the YOLOv4 model-based recognition algorithm for detecting fig fruit had outperformed YOLOv3 in terms of average precision and other metrics. Compared to YOLOv3's mAP value of 81.40%, YOLOv4's is the highest at 90.02%. Thus, the YOLOv4 can fulfil essential practical criteria and has a good detecting impact on figs in a challenging environment. |
---|---|
AbstractList | This paper proposes an appropriate detection approach based on a deep learning methodology to accomplish fast and effective detection and localization of fig fruits in complicated environmental pictures, e.g., in the wild. A dataset is manually created by first taking pictures of fig fruits in their natural environment and then annotating them with the label "buah tin." The augmentation technique was then employed to prevent overfitting during the training phase. Thus, the dataset can be split into 30% for testing and 70% for training. The YOLOv3 and YOLOv4 one-stage detection deep learning models will be used in the Phyton environment with Google Colaboratory for this research. The experimental outcomes indicated that the YOLOv4 model-based recognition algorithm for detecting fig fruit had outperformed YOLOv3 in terms of average precision and other metrics. Compared to YOLOv3's mAP value of 81.40%, YOLOv4's is the highest at 90.02%. Thus, the YOLOv4 can fulfil essential practical criteria and has a good detecting impact on figs in a challenging environment. |
Author | Izhar, Che Ani Adi S, Ahmad Farid, Mahm Kamaruzaman, Asf Habibi, Muhammad Afnan Maruzuki, Mif |
Author_xml | – sequence: 1 givenname: Asf surname: Kamaruzaman fullname: Kamaruzaman, Asf email: 2021459494@student.uitm.edu.my organization: Universiti Teknologi MARA Penang Branch,Centre for Electrical Engineering Studies,Permatang Pauh, Pulau Pinang,Malaysia – sequence: 2 givenname: Mahm surname: Farid fullname: Farid, Mahm email: 2018297868@student.uitm.edu.my organization: Universiti Teknologi MARA Penang Branch,Centre for Electrical Engineering Studies,Permatang Pauh, Pulau Pinang,Malaysia – sequence: 3 givenname: Che Ani Adi surname: Izhar fullname: Izhar, Che Ani Adi email: adiizhar@uitm.edu.my organization: Universiti Teknologi MARA Penang Branch,Centre for Electrical Engineering Studies,Permatang Pauh, Pulau Pinang,Malaysia – sequence: 4 givenname: Mif surname: Maruzuki fullname: Maruzuki, Mif email: ikmalf@uitm.edu.my organization: Universiti Teknologi MARA Penang Branch,Centre for Electrical Engineering Studies,Permatang Pauh, Pulau Pinang,Malaysia – sequence: 5 givenname: Ahmad surname: S fullname: S, Ahmad email: sharaf@uitm.edu.my organization: Universiti Teknologi MARA Penang Branch,Department of Applied Sciences,Permatang Pauh, Pulau Pinang,Malaysia – sequence: 6 givenname: Muhammad Afnan surname: Habibi fullname: Habibi, Muhammad Afnan email: afnan.habibi.ft@um.ac.id organization: Universitas Negeri Malang,Electrical Engineering Department,Kota Malang, Jawa Timur,Indonesia |
BookMark | eNotj71OwzAURo0EA5Q-AYt5gARf_3sjKqQgRWJoKsbKda-LpeBEJgy8PRV0OsN39EnnhlzmMSMh98BqAOYecPPpS98obYyqOeO8dk4oofQFWTpjQWslNViw1-SxmaYhBT-nMdMx0ifEiXboS075SONYaJuOtC3faT5tM4Y_MWXafyB9T8PhllxFP3zh8swF2bbP_eql6t7Wr6umqxKAnatwkFJA3BvgwnqjImdBOi9Y3ItojItGIZM-SrSgmBEIWhoRGEceLEgvFuTu_zch4m4q6ZT4szt3iV9_7EdM |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/eSmarTA56775.2022.9935356 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781665461818 1665461810 |
EndPage | 6 |
ExternalDocumentID | 9935356 |
Genre | orig-research |
GrantInformation_xml | – fundername: Ministry of Higher Education funderid: 10.13039/501100002385 – fundername: Ministry of Education funderid: 10.13039/100010002 |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i118t-cd4431fb71238a75f20c49a30fb3f779f75e04af4e815073e16473c02e2c814a3 |
IEDL.DBID | RIE |
IngestDate | Thu Jan 18 11:15:07 EST 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i118t-cd4431fb71238a75f20c49a30fb3f779f75e04af4e815073e16473c02e2c814a3 |
PageCount | 6 |
ParticipantIDs | ieee_primary_9935356 |
PublicationCentury | 2000 |
PublicationDate | 2022-Oct.-25 |
PublicationDateYYYYMMDD | 2022-10-25 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-Oct.-25 day: 25 |
PublicationDecade | 2020 |
PublicationTitle | 2022 2nd International Conference on Emerging Smart Technologies and Applications (eSmarTA) |
PublicationTitleAbbrev | eSmarTA |
PublicationYear | 2022 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.8768007 |
Snippet | This paper proposes an appropriate detection approach based on a deep learning methodology to accomplish fast and effective detection and localization of fig... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Deep learning Detectors fig Location awareness Measurement Software target detection Tin Training YOLOv3 YOLOv4 |
Title | Application of Deep Learning for Fig Fruit Detection in The Wild |
URI | https://ieeexplore.ieee.org/document/9935356 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA62B_Gk0opvIng0bTaPTXKz2C49idAK3ko2Oyl7cCt19_-bbJcWwYu3kATC5PXNJDPfIPRoNLUi9YykHDQR4Dkx3lGS-0IrroxN2mQw84V6_dDTWaTJedrHwgBA63wGo1hs__KLjWviU9k4YKnkMu2hnjJ6F6t1jB462swxLD7tdjmRqVIyGH6Mjbr-vxKntLiRnf5vxDM0PATg4bc9tJyjI6gG6Hly-GzGG4-nAF-440dd46B84qxc42zblHVoq1sfqwqXFQ5bAYfTXwzRezZbvsxJlwCBlEHvr4krRMB3n6sAL9oq6Rl1wlhOfc69UsYrCVRYL0BHvY5DJAfjjjJgTifC8gvUrzYVXCKcyCJ0LgT1kAiQ3rhgePg0DydeOGncFRpE6VdfO46LVSf49d_VN-gkTnC8w5m8Rf1628Ad6n0XzX27Kj_rNY3A |
link.rule.ids | 310,311,782,786,791,792,798,27934,54767 |
linkProvider | IEEE |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH-4CepJZRO_jeDRbm2TNO3N4VYmziFsgrfRJi-jB9sx2__fpCsbghdvIR-EfLz83kvyfg_gIQrdhAXadwKKocNQUyfS0nVSrUJBRZR4dTCY8UxMP8PhyNLkPG59YRCx_nyGPZus3_JVISt7VdY3WMopD1qwz5kIxMZb6wDuG-LMPs6-kvV8wAMhuDH9fL_XtPgVOqVGjvj4f32eQHfngkfet-ByCnuYd-BpsHtuJoUmQ8QVaRhSl8SonyTOliReV1lpysr6l1VOspyYzUCM_KsufMSj-fPYaUIgOJnR_EtHKmYQXqfCAEyYCK59V7Iooa5OqRYi0oKjyxLNMLSaHUVLD0al66MvQ48l9AzaeZHjORCPK1NZMVejx5DrSBrTQwepkXkmeSQvoGNHv1htWC4WzcAv_86-g8Px_G2ymLxMX6_gyE62PdF9fg3tcl3hDbS-VXVbr9APlYWREQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+2nd+International+Conference+on+Emerging+Smart+Technologies+and+Applications+%28eSmarTA%29&rft.atitle=Application+of+Deep+Learning+for+Fig+Fruit+Detection+in+The+Wild&rft.au=Kamaruzaman%2C+Asf&rft.au=Farid%2C+Mahm&rft.au=Izhar%2C+Che+Ani+Adi&rft.au=Maruzuki%2C+Mif&rft.date=2022-10-25&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FeSmarTA56775.2022.9935356&rft.externalDocID=9935356 |