Application of Deep Learning for Fig Fruit Detection in The Wild

This paper proposes an appropriate detection approach based on a deep learning methodology to accomplish fast and effective detection and localization of fig fruits in complicated environmental pictures, e.g., in the wild. A dataset is manually created by first taking pictures of fig fruits in their...

Full description

Saved in:
Bibliographic Details
Published in:2022 2nd International Conference on Emerging Smart Technologies and Applications (eSmarTA) pp. 1 - 6
Main Authors: Kamaruzaman, Asf, Farid, Mahm, Izhar, Che Ani Adi, Maruzuki, Mif, S, Ahmad, Habibi, Muhammad Afnan
Format: Conference Proceeding
Language:English
Published: IEEE 25-10-2022
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper proposes an appropriate detection approach based on a deep learning methodology to accomplish fast and effective detection and localization of fig fruits in complicated environmental pictures, e.g., in the wild. A dataset is manually created by first taking pictures of fig fruits in their natural environment and then annotating them with the label "buah tin." The augmentation technique was then employed to prevent overfitting during the training phase. Thus, the dataset can be split into 30% for testing and 70% for training. The YOLOv3 and YOLOv4 one-stage detection deep learning models will be used in the Phyton environment with Google Colaboratory for this research. The experimental outcomes indicated that the YOLOv4 model-based recognition algorithm for detecting fig fruit had outperformed YOLOv3 in terms of average precision and other metrics. Compared to YOLOv3's mAP value of 81.40%, YOLOv4's is the highest at 90.02%. Thus, the YOLOv4 can fulfil essential practical criteria and has a good detecting impact on figs in a challenging environment.
AbstractList This paper proposes an appropriate detection approach based on a deep learning methodology to accomplish fast and effective detection and localization of fig fruits in complicated environmental pictures, e.g., in the wild. A dataset is manually created by first taking pictures of fig fruits in their natural environment and then annotating them with the label "buah tin." The augmentation technique was then employed to prevent overfitting during the training phase. Thus, the dataset can be split into 30% for testing and 70% for training. The YOLOv3 and YOLOv4 one-stage detection deep learning models will be used in the Phyton environment with Google Colaboratory for this research. The experimental outcomes indicated that the YOLOv4 model-based recognition algorithm for detecting fig fruit had outperformed YOLOv3 in terms of average precision and other metrics. Compared to YOLOv3's mAP value of 81.40%, YOLOv4's is the highest at 90.02%. Thus, the YOLOv4 can fulfil essential practical criteria and has a good detecting impact on figs in a challenging environment.
Author Izhar, Che Ani Adi
S, Ahmad
Farid, Mahm
Kamaruzaman, Asf
Habibi, Muhammad Afnan
Maruzuki, Mif
Author_xml – sequence: 1
  givenname: Asf
  surname: Kamaruzaman
  fullname: Kamaruzaman, Asf
  email: 2021459494@student.uitm.edu.my
  organization: Universiti Teknologi MARA Penang Branch,Centre for Electrical Engineering Studies,Permatang Pauh, Pulau Pinang,Malaysia
– sequence: 2
  givenname: Mahm
  surname: Farid
  fullname: Farid, Mahm
  email: 2018297868@student.uitm.edu.my
  organization: Universiti Teknologi MARA Penang Branch,Centre for Electrical Engineering Studies,Permatang Pauh, Pulau Pinang,Malaysia
– sequence: 3
  givenname: Che Ani Adi
  surname: Izhar
  fullname: Izhar, Che Ani Adi
  email: adiizhar@uitm.edu.my
  organization: Universiti Teknologi MARA Penang Branch,Centre for Electrical Engineering Studies,Permatang Pauh, Pulau Pinang,Malaysia
– sequence: 4
  givenname: Mif
  surname: Maruzuki
  fullname: Maruzuki, Mif
  email: ikmalf@uitm.edu.my
  organization: Universiti Teknologi MARA Penang Branch,Centre for Electrical Engineering Studies,Permatang Pauh, Pulau Pinang,Malaysia
– sequence: 5
  givenname: Ahmad
  surname: S
  fullname: S, Ahmad
  email: sharaf@uitm.edu.my
  organization: Universiti Teknologi MARA Penang Branch,Department of Applied Sciences,Permatang Pauh, Pulau Pinang,Malaysia
– sequence: 6
  givenname: Muhammad Afnan
  surname: Habibi
  fullname: Habibi, Muhammad Afnan
  email: afnan.habibi.ft@um.ac.id
  organization: Universitas Negeri Malang,Electrical Engineering Department,Kota Malang, Jawa Timur,Indonesia
BookMark eNotj71OwzAURo0EA5Q-AYt5gARf_3sjKqQgRWJoKsbKda-LpeBEJgy8PRV0OsN39EnnhlzmMSMh98BqAOYecPPpS98obYyqOeO8dk4oofQFWTpjQWslNViw1-SxmaYhBT-nMdMx0ifEiXboS075SONYaJuOtC3faT5tM4Y_MWXafyB9T8PhllxFP3zh8swF2bbP_eql6t7Wr6umqxKAnatwkFJA3BvgwnqjImdBOi9Y3ItojItGIZM-SrSgmBEIWhoRGEceLEgvFuTu_zch4m4q6ZT4szt3iV9_7EdM
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/eSmarTA56775.2022.9935356
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665461818
1665461810
EndPage 6
ExternalDocumentID 9935356
Genre orig-research
GrantInformation_xml – fundername: Ministry of Higher Education
  funderid: 10.13039/501100002385
– fundername: Ministry of Education
  funderid: 10.13039/100010002
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i118t-cd4431fb71238a75f20c49a30fb3f779f75e04af4e815073e16473c02e2c814a3
IEDL.DBID RIE
IngestDate Thu Jan 18 11:15:07 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-cd4431fb71238a75f20c49a30fb3f779f75e04af4e815073e16473c02e2c814a3
PageCount 6
ParticipantIDs ieee_primary_9935356
PublicationCentury 2000
PublicationDate 2022-Oct.-25
PublicationDateYYYYMMDD 2022-10-25
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-Oct.-25
  day: 25
PublicationDecade 2020
PublicationTitle 2022 2nd International Conference on Emerging Smart Technologies and Applications (eSmarTA)
PublicationTitleAbbrev eSmarTA
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8768007
Snippet This paper proposes an appropriate detection approach based on a deep learning methodology to accomplish fast and effective detection and localization of fig...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Deep learning
Detectors
fig
Location awareness
Measurement
Software
target detection
Tin
Training
YOLOv3
YOLOv4
Title Application of Deep Learning for Fig Fruit Detection in The Wild
URI https://ieeexplore.ieee.org/document/9935356
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA62B_Gk0opvIng0bTaPTXKz2C49idAK3ko2Oyl7cCt19_-bbJcWwYu3kATC5PXNJDPfIPRoNLUi9YykHDQR4Dkx3lGS-0IrroxN2mQw84V6_dDTWaTJedrHwgBA63wGo1hs__KLjWviU9k4YKnkMu2hnjJ6F6t1jB462swxLD7tdjmRqVIyGH6Mjbr-vxKntLiRnf5vxDM0PATg4bc9tJyjI6gG6Hly-GzGG4-nAF-440dd46B84qxc42zblHVoq1sfqwqXFQ5bAYfTXwzRezZbvsxJlwCBlEHvr4krRMB3n6sAL9oq6Rl1wlhOfc69UsYrCVRYL0BHvY5DJAfjjjJgTifC8gvUrzYVXCKcyCJ0LgT1kAiQ3rhgePg0DydeOGncFRpE6VdfO46LVSf49d_VN-gkTnC8w5m8Rf1628Ad6n0XzX27Kj_rNY3A
link.rule.ids 310,311,782,786,791,792,798,27934,54767
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH-4CepJZRO_jeDRbm2TNO3N4VYmziFsgrfRJi-jB9sx2__fpCsbghdvIR-EfLz83kvyfg_gIQrdhAXadwKKocNQUyfS0nVSrUJBRZR4dTCY8UxMP8PhyNLkPG59YRCx_nyGPZus3_JVISt7VdY3WMopD1qwz5kIxMZb6wDuG-LMPs6-kvV8wAMhuDH9fL_XtPgVOqVGjvj4f32eQHfngkfet-ByCnuYd-BpsHtuJoUmQ8QVaRhSl8SonyTOliReV1lpysr6l1VOspyYzUCM_KsufMSj-fPYaUIgOJnR_EtHKmYQXqfCAEyYCK59V7Iooa5OqRYi0oKjyxLNMLSaHUVLD0al66MvQ48l9AzaeZHjORCPK1NZMVejx5DrSBrTQwepkXkmeSQvoGNHv1htWC4WzcAv_86-g8Px_G2ymLxMX6_gyE62PdF9fg3tcl3hDbS-VXVbr9APlYWREQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+2nd+International+Conference+on+Emerging+Smart+Technologies+and+Applications+%28eSmarTA%29&rft.atitle=Application+of+Deep+Learning+for+Fig+Fruit+Detection+in+The+Wild&rft.au=Kamaruzaman%2C+Asf&rft.au=Farid%2C+Mahm&rft.au=Izhar%2C+Che+Ani+Adi&rft.au=Maruzuki%2C+Mif&rft.date=2022-10-25&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FeSmarTA56775.2022.9935356&rft.externalDocID=9935356