Efficient Selection of Visual Features in Automatic Image Retrieval
Feature selection is a process of finding an optimal subset of features from the original features set. It could solve the problem of the dimension disaster caused by high-dimensional features, which seriously affects the efficiency of the content-based image retrieval. This paper presents a method...
Saved in:
Published in: | 2020 12th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA) pp. 361 - 365 |
---|---|
Main Authors: | , , |
Format: | Conference Proceeding |
Language: | English |
Published: |
IEEE
01-02-2020
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Feature selection is a process of finding an optimal subset of features from the original features set. It could solve the problem of the dimension disaster caused by high-dimensional features, which seriously affects the efficiency of the content-based image retrieval. This paper presents a method for generating an efficient feature reduction method of visual features with neighborhood rough set. By introducing the upper and lower approximation definition of neighborhood rough set, we calculate the approximation information to measure the relevance of the visual features. When the attributes of visual features are reduced and the rest of features can correctly describe the context of the images, the efficiency of the image retrieval could be improved. Furthermore, we use the selected the efficient visual features to perform the image retrieval. Experiment results show that the proposed algorithm is effective in comparison with the other mentioned methods. |
---|---|
AbstractList | Feature selection is a process of finding an optimal subset of features from the original features set. It could solve the problem of the dimension disaster caused by high-dimensional features, which seriously affects the efficiency of the content-based image retrieval. This paper presents a method for generating an efficient feature reduction method of visual features with neighborhood rough set. By introducing the upper and lower approximation definition of neighborhood rough set, we calculate the approximation information to measure the relevance of the visual features. When the attributes of visual features are reduced and the rest of features can correctly describe the context of the images, the efficiency of the image retrieval could be improved. Furthermore, we use the selected the efficient visual features to perform the image retrieval. Experiment results show that the proposed algorithm is effective in comparison with the other mentioned methods. |
Author | Zhang, Chunmei Yao, Fenglin Zhao, Jie |
Author_xml | – sequence: 1 givenname: Jie surname: Zhao fullname: Zhao, Jie organization: Taiyuan University – sequence: 2 givenname: Chunmei surname: Zhang fullname: Zhang, Chunmei organization: College of Information Engineering – sequence: 3 givenname: Fenglin surname: Yao fullname: Yao, Fenglin organization: Taiyuan University of Science and Technology |
BookMark | eNotz19LwzAUBfAoCm5zn0CQfIHOe5OmSR9H2XSwIej0ddymtxLpH2kzwW9vQZ_Oy-HwO3Nx1fUdC3GPsEKE_GFXHI6HtQFl0pUCBSsAcNmFmKNVDi04dJdiptDYBFOHN2I5jp9TR6NzuVUzUWzqOvjAXZSv3LCPoe9kX8v3MJ6pkVumeB54lKGT63PsW4rBy11LHyxfOA6Bv6m5Fdc1NSMv_3Mh3rabY_GU7J8fd8V6nwREF5PU1mVeUc7OKE-gdclpOqn0hFSZw3LyVqRKr4wGX3trK6fBVETZZCWjF-Lubzcw8-lrCC0NP6ccpvtg9S-qpUys |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICMTMA50254.2020.00086 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 1728170818 9781728170817 |
EISSN | 2157-1481 |
EndPage | 365 |
ExternalDocumentID | 9050207 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI OCL RIE RIL |
ID | FETCH-LOGICAL-i118t-47fb9da9e852ca033be4414838182681b170da2bc2530cfc77d8305daa6897a53 |
IEDL.DBID | RIE |
IngestDate | Wed Jun 26 19:26:31 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i118t-47fb9da9e852ca033be4414838182681b170da2bc2530cfc77d8305daa6897a53 |
PageCount | 5 |
ParticipantIDs | ieee_primary_9050207 |
PublicationCentury | 2000 |
PublicationDate | 2020-Feb. |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-Feb. |
PublicationDecade | 2020 |
PublicationTitle | 2020 12th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA) |
PublicationTitleAbbrev | ICMTMA |
PublicationYear | 2020 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0003188972 |
Score | 1.7815936 |
Snippet | Feature selection is a process of finding an optimal subset of features from the original features set. It could solve the problem of the dimension disaster... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 361 |
SubjectTerms | Approximation algorithms Automation Feature extraction Feature selection Image retrieval Lower approximation Mechatronics Neighborhood rough set Rough sets Upper approximation Visualization |
Title | Efficient Selection of Visual Features in Automatic Image Retrieval |
URI | https://ieeexplore.ieee.org/document/9050207 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFLUoEyw8WsRbHhgJ9SOO7bEqrdqhCNGC2Cq_IlWCBNHm_7l2q9KBhS2KYkU6tnPvce45F6E7wZ2lxtIM9lGR5Vz6zFCiMlt4kRfG52Uy0h5N5dO7ehxEm5z7rRYmhJCKz8JDvEz_8n3tmnhU1tVEQHYjW6gltVprtbbnKbA2lZZsIwKmRHfH_cls0hNR7g08kMUSLhIl0ztdVFIQGR797_XHqPOrxsPP2zhzgvZCdYoOd4wE26g_SE4QMBxPU2MbQBvXJX5bLBvzgWOe1wCvxosK95pVnWxa8fgTviX4JbXUgvXWQa_Dwaw_yjbtEbIFsIJVlsvSam90UII5Qzi3AXKbXMUYzApIR6kk3jDrmODElU5Kr2B3e2MKQMoIfob2q7oK5wgLYCHAKwz1pc0Z4XGOKDxX2sJJocUFakc45l9rB4z5BonLv29foYOI97q2-Rrtr76bcINaS9_cpjn7AcWXlhU |
link.rule.ids | 310,311,782,786,791,792,798,23941,23942,25151,27936,54770 |
linkProvider | IEEE |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH4RPKgXf4Dxtz14dNJ17bodCUIgAjGCxhtp1y4h0c0I-_99LQQ5ePG2LGuyfG333te973sAdyLKdKh0GOA-igMeSROokCaBjo3gsTI890ba_YkcvyePXWeTc7_RwlhrffGZfXCX_l--KbPKHZW1Uiowu5E12BVcSrpSa21OVHB1JqlkaxlwSNPWoDOajtrCCb6RCTJXxEWdaHqrj4oPI73D_73AETR_9XjkeRNpjmHHFidwsGUl2IBO13tB4HAy8a1tEG9S5uRtvqjUB3GZXoXMmswL0q6WpTdqJYNP_JqQF99UC1dcE1573WmnH6wbJARz5AXLgMtcp0alNhEsUzSKtMXshicuCrMYE9JQUqOYzpiIaJZnUpoE97dRKkaklIhOoV6UhT0DIpCHILNQock1ZzRysxTic7mOMylScQ4NB8fsa-WBMVsjcfH37VvY609Hw9lwMH66hH2H_arS-Qrqy-_KXkNtYaobP38_1TSZYA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2020+12th+International+Conference+on+Measuring+Technology+and+Mechatronics+Automation+%28ICMTMA%29&rft.atitle=Efficient+Selection+of+Visual+Features+in+Automatic+Image+Retrieval&rft.au=Zhao%2C+Jie&rft.au=Zhang%2C+Chunmei&rft.au=Yao%2C+Fenglin&rft.date=2020-02-01&rft.pub=IEEE&rft.eissn=2157-1481&rft.spage=361&rft.epage=365&rft_id=info:doi/10.1109%2FICMTMA50254.2020.00086&rft.externalDocID=9050207 |