Efficient Selection of Visual Features in Automatic Image Retrieval

Feature selection is a process of finding an optimal subset of features from the original features set. It could solve the problem of the dimension disaster caused by high-dimensional features, which seriously affects the efficiency of the content-based image retrieval. This paper presents a method...

Full description

Saved in:
Bibliographic Details
Published in:2020 12th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA) pp. 361 - 365
Main Authors: Zhao, Jie, Zhang, Chunmei, Yao, Fenglin
Format: Conference Proceeding
Language:English
Published: IEEE 01-02-2020
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Feature selection is a process of finding an optimal subset of features from the original features set. It could solve the problem of the dimension disaster caused by high-dimensional features, which seriously affects the efficiency of the content-based image retrieval. This paper presents a method for generating an efficient feature reduction method of visual features with neighborhood rough set. By introducing the upper and lower approximation definition of neighborhood rough set, we calculate the approximation information to measure the relevance of the visual features. When the attributes of visual features are reduced and the rest of features can correctly describe the context of the images, the efficiency of the image retrieval could be improved. Furthermore, we use the selected the efficient visual features to perform the image retrieval. Experiment results show that the proposed algorithm is effective in comparison with the other mentioned methods.
AbstractList Feature selection is a process of finding an optimal subset of features from the original features set. It could solve the problem of the dimension disaster caused by high-dimensional features, which seriously affects the efficiency of the content-based image retrieval. This paper presents a method for generating an efficient feature reduction method of visual features with neighborhood rough set. By introducing the upper and lower approximation definition of neighborhood rough set, we calculate the approximation information to measure the relevance of the visual features. When the attributes of visual features are reduced and the rest of features can correctly describe the context of the images, the efficiency of the image retrieval could be improved. Furthermore, we use the selected the efficient visual features to perform the image retrieval. Experiment results show that the proposed algorithm is effective in comparison with the other mentioned methods.
Author Zhang, Chunmei
Yao, Fenglin
Zhao, Jie
Author_xml – sequence: 1
  givenname: Jie
  surname: Zhao
  fullname: Zhao, Jie
  organization: Taiyuan University
– sequence: 2
  givenname: Chunmei
  surname: Zhang
  fullname: Zhang, Chunmei
  organization: College of Information Engineering
– sequence: 3
  givenname: Fenglin
  surname: Yao
  fullname: Yao, Fenglin
  organization: Taiyuan University of Science and Technology
BookMark eNotz19LwzAUBfAoCm5zn0CQfIHOe5OmSR9H2XSwIej0ddymtxLpH2kzwW9vQZ_Oy-HwO3Nx1fUdC3GPsEKE_GFXHI6HtQFl0pUCBSsAcNmFmKNVDi04dJdiptDYBFOHN2I5jp9TR6NzuVUzUWzqOvjAXZSv3LCPoe9kX8v3MJ6pkVumeB54lKGT63PsW4rBy11LHyxfOA6Bv6m5Fdc1NSMv_3Mh3rabY_GU7J8fd8V6nwREF5PU1mVeUc7OKE-gdclpOqn0hFSZw3LyVqRKr4wGX3trK6fBVETZZCWjF-Lubzcw8-lrCC0NP6ccpvtg9S-qpUys
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICMTMA50254.2020.00086
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1728170818
9781728170817
EISSN 2157-1481
EndPage 365
ExternalDocumentID 9050207
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
ID FETCH-LOGICAL-i118t-47fb9da9e852ca033be4414838182681b170da2bc2530cfc77d8305daa6897a53
IEDL.DBID RIE
IngestDate Wed Jun 26 19:26:31 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-47fb9da9e852ca033be4414838182681b170da2bc2530cfc77d8305daa6897a53
PageCount 5
ParticipantIDs ieee_primary_9050207
PublicationCentury 2000
PublicationDate 2020-Feb.
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-Feb.
PublicationDecade 2020
PublicationTitle 2020 12th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA)
PublicationTitleAbbrev ICMTMA
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003188972
Score 1.7815936
Snippet Feature selection is a process of finding an optimal subset of features from the original features set. It could solve the problem of the dimension disaster...
SourceID ieee
SourceType Publisher
StartPage 361
SubjectTerms Approximation algorithms
Automation
Feature extraction
Feature selection
Image retrieval
Lower approximation
Mechatronics
Neighborhood rough set
Rough sets
Upper approximation
Visualization
Title Efficient Selection of Visual Features in Automatic Image Retrieval
URI https://ieeexplore.ieee.org/document/9050207
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFLUoEyw8WsRbHhgJ9SOO7bEqrdqhCNGC2Cq_IlWCBNHm_7l2q9KBhS2KYkU6tnPvce45F6E7wZ2lxtIM9lGR5Vz6zFCiMlt4kRfG52Uy0h5N5dO7ehxEm5z7rRYmhJCKz8JDvEz_8n3tmnhU1tVEQHYjW6gltVprtbbnKbA2lZZsIwKmRHfH_cls0hNR7g08kMUSLhIl0ztdVFIQGR797_XHqPOrxsPP2zhzgvZCdYoOd4wE26g_SE4QMBxPU2MbQBvXJX5bLBvzgWOe1wCvxosK95pVnWxa8fgTviX4JbXUgvXWQa_Dwaw_yjbtEbIFsIJVlsvSam90UII5Qzi3AXKbXMUYzApIR6kk3jDrmODElU5Kr2B3e2MKQMoIfob2q7oK5wgLYCHAKwz1pc0Z4XGOKDxX2sJJocUFakc45l9rB4z5BonLv29foYOI97q2-Rrtr76bcINaS9_cpjn7AcWXlhU
link.rule.ids 310,311,782,786,791,792,798,23941,23942,25151,27936,54770
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH4RPKgXf4Dxtz14dNJ17bodCUIgAjGCxhtp1y4h0c0I-_99LQQ5ePG2LGuyfG333te973sAdyLKdKh0GOA-igMeSROokCaBjo3gsTI890ba_YkcvyePXWeTc7_RwlhrffGZfXCX_l--KbPKHZW1Uiowu5E12BVcSrpSa21OVHB1JqlkaxlwSNPWoDOajtrCCb6RCTJXxEWdaHqrj4oPI73D_73AETR_9XjkeRNpjmHHFidwsGUl2IBO13tB4HAy8a1tEG9S5uRtvqjUB3GZXoXMmswL0q6WpTdqJYNP_JqQF99UC1dcE1573WmnH6wbJARz5AXLgMtcp0alNhEsUzSKtMXshicuCrMYE9JQUqOYzpiIaJZnUpoE97dRKkaklIhOoV6UhT0DIpCHILNQock1ZzRysxTic7mOMylScQ4NB8fsa-WBMVsjcfH37VvY609Hw9lwMH66hH2H_arS-Qrqy-_KXkNtYaobP38_1TSZYA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2020+12th+International+Conference+on+Measuring+Technology+and+Mechatronics+Automation+%28ICMTMA%29&rft.atitle=Efficient+Selection+of+Visual+Features+in+Automatic+Image+Retrieval&rft.au=Zhao%2C+Jie&rft.au=Zhang%2C+Chunmei&rft.au=Yao%2C+Fenglin&rft.date=2020-02-01&rft.pub=IEEE&rft.eissn=2157-1481&rft.spage=361&rft.epage=365&rft_id=info:doi/10.1109%2FICMTMA50254.2020.00086&rft.externalDocID=9050207