Electromyography Signal Classification using Convolution Neural Network Architecture for Bionic Arm High Level Control

Deep Learning is a trending control method in recent applications and studies. It is used in complex classifiers where traditional condition classifiers fall short in complexity and versatility. Many previous attempts use Deep Neural Networks to classify Electromyography (EMG) signals; however, most...

Full description

Saved in:
Bibliographic Details
Published in:2021 16th International Conference on Computer Engineering and Systems (ICCES) pp. 1 - 6
Main Authors: Farag, Hamdy O., Awad, Mohammed I., Baioumy, Ahmad M., Shawky, Abdelrahman A., Taha, Abdelrahman A., Hassan, Aya A., Elqess, Youstina A., Ismail, Oumima I., El-Shazly, Bothayna T., Mohamed, Yomna A., Salem, Salem M.
Format: Conference Proceeding
Language:English
Published: IEEE 15-12-2021
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Deep Learning is a trending control method in recent applications and studies. It is used in complex classifiers where traditional condition classifiers fall short in complexity and versatility. Many previous attempts use Deep Neural Networks to classify Electromyography (EMG) signals; however, most required high computational power to achieve acceptable real-time operation. By implementing a convolution neural network (CNN), we can have both high accuracy and real-time operation using off-the-shelf microprocessor boards that can be easily embedded in a bionic limb for seamless control. In this project, we use a commercial EMG sensor (Myo Armband) to gather data needed for training the CNN for reliable classification of 14 different bionic arm poses. Progress done in this study can be used for repeatable and reliable control over bionic limbs (tests were on a bionic arm for forearm amputees). It can be also used as a control interface by gesture recognition as a safe interaction medium between human and machines.
AbstractList Deep Learning is a trending control method in recent applications and studies. It is used in complex classifiers where traditional condition classifiers fall short in complexity and versatility. Many previous attempts use Deep Neural Networks to classify Electromyography (EMG) signals; however, most required high computational power to achieve acceptable real-time operation. By implementing a convolution neural network (CNN), we can have both high accuracy and real-time operation using off-the-shelf microprocessor boards that can be easily embedded in a bionic limb for seamless control. In this project, we use a commercial EMG sensor (Myo Armband) to gather data needed for training the CNN for reliable classification of 14 different bionic arm poses. Progress done in this study can be used for repeatable and reliable control over bionic limbs (tests were on a bionic arm for forearm amputees). It can be also used as a control interface by gesture recognition as a safe interaction medium between human and machines.
Author Salem, Salem M.
Mohamed, Yomna A.
Baioumy, Ahmad M.
Taha, Abdelrahman A.
Shawky, Abdelrahman A.
Hassan, Aya A.
Awad, Mohammed I.
El-Shazly, Bothayna T.
Farag, Hamdy O.
Ismail, Oumima I.
Elqess, Youstina A.
Author_xml – sequence: 1
  givenname: Hamdy O.
  surname: Farag
  fullname: Farag, Hamdy O.
  email: 2100966@eng.asu.edu.eg
  organization: Ain Shams University,Faculty of Engineering,Department of Mechatronics,Cairo,Egypt
– sequence: 2
  givenname: Mohammed I.
  surname: Awad
  fullname: Awad, Mohammed I.
  email: mohammed.awad@eng.asu.edu.eg
  organization: Ain Shams University,Faculty of Engineering,Department of Mechatronics,Cairo,Egypt
– sequence: 3
  givenname: Ahmad M.
  surname: Baioumy
  fullname: Baioumy, Ahmad M.
  email: 16e0211@eng.asu.edu.eg
  organization: Ain Shams University,Faculty of Engineering,Department of Mechatronics,Cairo,Egypt
– sequence: 4
  givenname: Abdelrahman A.
  surname: Shawky
  fullname: Shawky, Abdelrahman A.
  email: 1600775@eng.asu.edu.eg
  organization: Ain Shams University,Faculty of Engineering,Department of Mechatronics,Cairo,Egypt
– sequence: 5
  givenname: Abdelrahman A.
  surname: Taha
  fullname: Taha, Abdelrahman A.
  email: 1600735@eng.asu.edu.eg
  organization: Ain Shams University,Faculty of Engineering,Department of Mechatronics,Cairo,Egypt
– sequence: 6
  givenname: Aya A.
  surname: Hassan
  fullname: Hassan, Aya A.
  email: 1602012@eng.asu.edu.eg
  organization: Ain Shams University,Faculty of Engineering,Department of Mechatronics,Cairo,Egypt
– sequence: 7
  givenname: Youstina A.
  surname: Elqess
  fullname: Elqess, Youstina A.
  email: 1601705@eng.asu.edu.eg
  organization: Ain Shams University,Faculty of Engineering,Department of Mechatronics,Cairo,Egypt
– sequence: 8
  givenname: Oumima I.
  surname: Ismail
  fullname: Ismail, Oumima I.
  email: 1600319@eng.asu.edu.eg
  organization: Ain Shams University,Faculty of Engineering,Department of Mechatronics,Cairo,Egypt
– sequence: 9
  givenname: Bothayna T.
  surname: El-Shazly
  fullname: El-Shazly, Bothayna T.
  email: 1600389@eng.asu.edu.eg
  organization: Ain Shams University,Faculty of Engineering,Department of Mechatronics,Cairo,Egypt
– sequence: 10
  givenname: Yomna A.
  surname: Mohamed
  fullname: Mohamed, Yomna A.
  email: 1601702@eng.asu.edu.eg
  organization: Ain Shams University,Faculty of Engineering,Department of Mechatronics,Cairo,Egypt
– sequence: 11
  givenname: Salem M.
  surname: Salem
  fullname: Salem, Salem M.
  email: 16e0079@eng.asu.edu.eg
  organization: Ain Shams University,Faculty of Engineering,Department of Mechatronics,Cairo,Egypt
BookMark eNotkE1OwzAUhI0ECyg9AQt8gRa_OHGSZYkKrRSVRWFdOclzYuHElfODcntc6GqkmdE30jyQ2852SMgzsDUAS1_2WbY9RiHjsA5YAOtUJAJiuCHLNE5ACB8lIo7vybQ1WA7OtrOtnTw3Mz3qupOGZkb2vVa6lIO2HR173dU0s91kzfjnHHB0vnfA4ce6b7pxZaMHzxodUmUdffUlXXq_pTtdNzTHCc2F4NfMI7lT0vS4vOqCfL1tP7PdKv9432ebfKUBkmHFEdJQxRGvYsGiIEGehpEKUoSSK1UGwidFJKpKsIIXClkQCsa5qISMwgKQL8jTP1cj4unsdCvdfLq-wX8B3bFcJA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICCES54031.2021.9686171
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665408677
1665408677
EndPage 6
ExternalDocumentID 9686171
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i118t-3e194f753d760528e3945f29e1c3ffc2653db56dd60b3bfe02460336d6a54b1e3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:48 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-3e194f753d760528e3945f29e1c3ffc2653db56dd60b3bfe02460336d6a54b1e3
PageCount 6
ParticipantIDs ieee_primary_9686171
PublicationCentury 2000
PublicationDate 2021-Dec.-15
PublicationDateYYYYMMDD 2021-12-15
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-Dec.-15
  day: 15
PublicationDecade 2020
PublicationTitle 2021 16th International Conference on Computer Engineering and Systems (ICCES)
PublicationTitleAbbrev ICCES
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8293796
Snippet Deep Learning is a trending control method in recent applications and studies. It is used in complex classifiers where traditional condition classifiers fall...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Arms
Bionic Arm Gesture Control
CNN Architecture
Convolution
Deep learning
Electromyography
EMG Signal Classifier
Neural networks
Real-time Signal Processing
Training
Training data
Title Electromyography Signal Classification using Convolution Neural Network Architecture for Bionic Arm High Level Control
URI https://ieeexplore.ieee.org/document/9686171
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA62J08qrfgmB49uu9k8dnPUuqWCFKEK3sommS09tBVtC_57Z3aXquDFW0hCAjOBmS_zzQxj1wFdaqOcjlQKLlKyMJHVOkRSahDGOwglRXRHk3T8mt3nVCbnZpcLAwAV-Qx6NKxi-WHlN_RV1rcmQ4OLWKeV2qzO1WooWyK2_YfBIJ-gAyIJ9iWi1-z-1TalshrDg__dd8i63-l3_GlnWI7YHiw7bJvXDWsWn02RaT6Zz_AV8KqtJRF-KhlzIrLPOJ60bR4Vp_obuG9cE7757Y_QAUeXld_Rl6zH-QUn1gd_JB4RnUAc9i57GebPg1HUNE2I5ogV1pEEYVWJICSkiFSSDKRVukwsCC_L0icGV5w2IZjYSVcC2mgTS2mCKbRyAuQxay9XSzhh3PmQgc28Fl6pNINCpg7hR5GgWnUa21PWIZlN3-q6GNNGXGd_T5-zfVILUUGEvmDt9fsGLlnrI2yuKk1-ARlCosk
link.rule.ids 310,311,782,786,791,792,798,27934,54767
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aD3pSacW3OXh0283mtTlqbWmxFqEVvJVNMls8tBVtC_57J7tLVfDiLSQhgZnAzJf5ZoaQa48utRJWRkKDjQTPVGSk9BHnEphyFnweIrq9kR6-pPedUCbnZpMLAwAF-QyaYVjE8v3CrcJXWcuoFA0uYp0dKbTSZbZWRdpisWn12-3OCF0QHoBfwprV_l-NUwq70d3_340HpPGdgEefNqblkGzBvE7WnbJlzeyzKjNNR69TfAe0aGwZKD-FlGmgsk8pnrSunhUNFThw37CkfNPbH8EDik4rvQufsg7nZzTwPuggMInCCYHF3iDP3c643YuqtgnRK6KFZcSBGZEjDPEasUqSAjdC5okB5nieu0ThipXKexVbbnNAK61izpVXmRSWAT8itfliDseEWudTMKmTzAmhU8i4tghAsgQVK3VsTkg9yGzyVlbGmFTiOv17-ors9saPg8mgP3w4I3tBRYEYwuQ5qS3fV3BBtj_86rLQ6hfVQKYa
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+16th+International+Conference+on+Computer+Engineering+and+Systems+%28ICCES%29&rft.atitle=Electromyography+Signal+Classification+using+Convolution+Neural+Network+Architecture+for+Bionic+Arm+High+Level+Control&rft.au=Farag%2C+Hamdy+O.&rft.au=Awad%2C+Mohammed+I.&rft.au=Baioumy%2C+Ahmad+M.&rft.au=Shawky%2C+Abdelrahman+A.&rft.date=2021-12-15&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FICCES54031.2021.9686171&rft.externalDocID=9686171