Invited: Accelerator design for deep learning training

Deep Neural Networks (DNNs) have emerged as a powerful and versatile set of techniques showing successes on challenging artificial intelligence (AI) problems. Applications in domains such as image/video processing, autonomous cars, natural language processing, speech synthesis and recognition, genom...

Full description

Saved in:
Bibliographic Details
Published in:2017 54th ACM/EDAC/IEEE Design Automation Conference (DAC) pp. 1 - 2
Main Authors: Agrawal, Ankur, Chia-Yu Chen, Jungwook Choi, Gopalakrishnan, Kailash, Jinwook Oh, Shukla, Sunil, Srinivasan, Viji, Venkataramani, Swagath, Wei Zhang
Format: Conference Proceeding
Language:English
Published: IEEE 01-06-2017
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Deep Neural Networks (DNNs) have emerged as a powerful and versatile set of techniques showing successes on challenging artificial intelligence (AI) problems. Applications in domains such as image/video processing, autonomous cars, natural language processing, speech synthesis and recognition, genomics and many others have embraced deep learning as the foundation. DNNs achieve superior accuracy for these applications with high computational complexity using very large models which require 100s of MBs of data storage, exaops of computation and high bandwidth for data movement. In spite of these impressive advances, it still takes days to weeks to train state of the art Deep Networks on large datasets - which directly limits the pace of innovation and adoption. In this paper, we present a multi-pronged approach to address the challenges in meeting both the throughput and the energy efficiency goals for DNN training.
AbstractList Deep Neural Networks (DNNs) have emerged as a powerful and versatile set of techniques showing successes on challenging artificial intelligence (AI) problems. Applications in domains such as image/video processing, autonomous cars, natural language processing, speech synthesis and recognition, genomics and many others have embraced deep learning as the foundation. DNNs achieve superior accuracy for these applications with high computational complexity using very large models which require 100s of MBs of data storage, exaops of computation and high bandwidth for data movement. In spite of these impressive advances, it still takes days to weeks to train state of the art Deep Networks on large datasets - which directly limits the pace of innovation and adoption. In this paper, we present a multi-pronged approach to address the challenges in meeting both the throughput and the energy efficiency goals for DNN training.
Author Wei Zhang
Jungwook Choi
Srinivasan, Viji
Agrawal, Ankur
Venkataramani, Swagath
Jinwook Oh
Gopalakrishnan, Kailash
Chia-Yu Chen
Shukla, Sunil
Author_xml – sequence: 1
  givenname: Ankur
  surname: Agrawal
  fullname: Agrawal, Ankur
  organization: T.J. Watson Res. Center, IBM, Westwood, MA, USA
– sequence: 2
  surname: Chia-Yu Chen
  fullname: Chia-Yu Chen
  organization: T.J. Watson Res. Center, IBM, Westwood, MA, USA
– sequence: 3
  surname: Jungwook Choi
  fullname: Jungwook Choi
  organization: T.J. Watson Res. Center, IBM, Westwood, MA, USA
– sequence: 4
  givenname: Kailash
  surname: Gopalakrishnan
  fullname: Gopalakrishnan, Kailash
  email: kailash@us.ibm.com
  organization: T.J. Watson Res. Center, IBM, Westwood, MA, USA
– sequence: 5
  surname: Jinwook Oh
  fullname: Jinwook Oh
  organization: T.J. Watson Res. Center, IBM, Westwood, MA, USA
– sequence: 6
  givenname: Sunil
  surname: Shukla
  fullname: Shukla, Sunil
  organization: T.J. Watson Res. Center, IBM, Westwood, MA, USA
– sequence: 7
  givenname: Viji
  surname: Srinivasan
  fullname: Srinivasan, Viji
  organization: T.J. Watson Res. Center, IBM, Westwood, MA, USA
– sequence: 8
  givenname: Swagath
  surname: Venkataramani
  fullname: Venkataramani, Swagath
  organization: T.J. Watson Res. Center, IBM, Westwood, MA, USA
– sequence: 9
  surname: Wei Zhang
  fullname: Wei Zhang
  organization: T.J. Watson Res. Center, IBM, Westwood, MA, USA
BookMark eNotjE1LAzEQQCPowVbPHrzkD2ydySTZHW-lqC0UvOi5ZLOTEljTki6C_976cXqPd3gzdVkORZS6Q1ggWvdA4NETLwhaw9ZeqNm5Alk2bXut_KZ85kmGR72MUUapYTpUPcgp74tOvypHPUqoJZe9nmrIP3KjrlIYT3L7z7l6f356W62b7evLZrXcNhnBTU3njEXD_UCCGFiIGJIHm3hIMXoECWRcxwjR-0SdD62VXliSC872lubq_u-bRWR3rPkj1K9dB-eHYfoGRHhBNQ
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1145/3061639.3072944
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1450349277
9781450349277
EndPage 2
ExternalDocumentID 8060429
Genre orig-research
GroupedDBID 6IE
6IH
CBEJK
RIE
RIO
ID FETCH-LOGICAL-i105t-8524129bd3e11a9e3390f604f9dfcc610ea3258910c66f386a74ebe9ef5a54b43
IEDL.DBID RIE
IngestDate Thu Jun 29 18:36:44 EDT 2023
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i105t-8524129bd3e11a9e3390f604f9dfcc610ea3258910c66f386a74ebe9ef5a54b43
PageCount 2
ParticipantIDs ieee_primary_8060429
PublicationCentury 2000
PublicationDate 2017-June
PublicationDateYYYYMMDD 2017-06-01
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-June
PublicationDecade 2010
PublicationTitle 2017 54th ACM/EDAC/IEEE Design Automation Conference (DAC)
PublicationTitleAbbrev DAC
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
Score 2.0662148
Snippet Deep Neural Networks (DNNs) have emerged as a powerful and versatile set of techniques showing successes on challenging artificial intelligence (AI) problems....
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Computational modeling
Data models
Hardware
Machine learning
Neural networks
System-on-chip
Training
Title Invited: Accelerator design for deep learning training
URI https://ieeexplore.ieee.org/document/8060429
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB1sT55UWvGbHDyadvOxH_Em2lIvIqjgrWSTiXjZFu329ztJ14rgxVtYWLLZIXmPmcx7AJfB0KmYo-fEVQPXTnhupS-5C1nmYt1HYOxGnj2VD6_V3STK5Fxte2EQMV0-w1Ecplq-X7g2psrGVVR6kaYHvdJUm16tTq1H6HxM5JfIhRmpKIat9S-7lIQW073_zbMPw5-2O_a4BZQD2MFmAMV9s4608JrdOEcYkcrizKeLFyykIS5ZZ_7wxr4tH4bwMp083854Z3bA34nirHiVE5ZKU3uFQliDSpks0GcE44NzRHLQKhktAOkXFkFVhS01BcBgyG2ua60Ood8sGjwCZokTGCm8pOhorUNNLMXSK8J72nBOHMMgrnm-3OhZzLvlnvz9-BR2ZYSylHk4g_7qo8Vz6H369iJF4AsVvYh3
link.rule.ids 310,311,782,786,791,792,798,27936,54770
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEJ0IHvSkBozf9uDRwrbbZbfejEIgIjERE2-ktFPjZSEI_n6nZcWYePHWbLLpdifte5npvAdw5TWdihk6TlzVc2WF40a6nFufJDbUfQSGbuT-cz56Le67QSbnetMLg4jx8hm2wjDW8t3MrkKqrF0EpRepa7CdqTxP1t1alV6PUFmb6C_RC91Kgxy2Ur8MUyJe9Pb-N9M-NH8a79jTBlIOYAvLBnQG5Wcghjfs1lpCiVgYZy5evWA-DnHOKvuHN_Zt-tCEl153fNfnld0BfyeSs-RFRmgq9dSlKITRmKY68fQZXjtvLdEcNKkMJoD0Ezs-LTomVxQCjT4zmZqq9BDq5azEI2CGWIGWwkmKj1LKT4mnGHpFOEdbzopjaIQ1T-ZrRYtJtdyTvx9fwk5__DicDAejh1PYlQHYYh7iDOrLxQrPofbhVhcxGl9vc4vC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+54th+ACM%2FEDAC%2FIEEE+Design+Automation+Conference+%28DAC%29&rft.atitle=Invited%3A+Accelerator+design+for+deep+learning+training&rft.au=Agrawal%2C+Ankur&rft.au=Chia-Yu+Chen&rft.au=Jungwook+Choi&rft.au=Gopalakrishnan%2C+Kailash&rft.date=2017-06-01&rft.pub=IEEE&rft.spage=1&rft.epage=2&rft_id=info:doi/10.1145%2F3061639.3072944&rft.externalDocID=8060429