Combining radar and vision for self-supervised ground segmentation in outdoor environments

Ground segmentation is critical for a mobile robot to successfully accomplish its tasks in challenging environments. In this paper, we propose a self-supervised radar-vision classification system that allows an autonomous vehicle, operating in natural terrains, to automatically construct online a vi...

Full description

Saved in:
Bibliographic Details
Published in:2011 IEEE/RSJ International Conference on Intelligent Robots and Systems pp. 255 - 260
Main Authors: Milella, A., Reina, G., Underwood, J., Douillard, B.
Format: Conference Proceeding
Language:English
Published: IEEE 01-09-2011
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Ground segmentation is critical for a mobile robot to successfully accomplish its tasks in challenging environments. In this paper, we propose a self-supervised radar-vision classification system that allows an autonomous vehicle, operating in natural terrains, to automatically construct online a visual model of the ground and perform accurate ground segmentation. The system features two main phases: the training phase and the classification phase. The training stage relies on radar measurements to drive the selection of ground patches in the camera images, and learn online the visual appearance of the ground. In the classification stage, the visual model of the ground can be used to perform high level tasks such as image segmentation and terrain classification, as well as to solve radar ambiguities. The proposed method leads to the following main advantages: (a) a self-supervised training of the visual classifier, where the radar allows the vehicle to automatically acquire a set of ground samples, eliminating the need for time-consuming manual labeling; (b) the ground model can be continuously updated during the operation of the vehicle, thus making it feasible the use of the system in long range and long duration navigation applications. This paper details the proposed system and presents the results of experimental tests conducted in the field by using an unmanned vehicle.
AbstractList Ground segmentation is critical for a mobile robot to successfully accomplish its tasks in challenging environments. In this paper, we propose a self-supervised radar-vision classification system that allows an autonomous vehicle, operating in natural terrains, to automatically construct online a visual model of the ground and perform accurate ground segmentation. The system features two main phases: the training phase and the classification phase. The training stage relies on radar measurements to drive the selection of ground patches in the camera images, and learn online the visual appearance of the ground. In the classification stage, the visual model of the ground can be used to perform high level tasks such as image segmentation and terrain classification, as well as to solve radar ambiguities. The proposed method leads to the following main advantages: (a) a self-supervised training of the visual classifier, where the radar allows the vehicle to automatically acquire a set of ground samples, eliminating the need for time-consuming manual labeling; (b) the ground model can be continuously updated during the operation of the vehicle, thus making it feasible the use of the system in long range and long duration navigation applications. This paper details the proposed system and presents the results of experimental tests conducted in the field by using an unmanned vehicle.
Author Underwood, J.
Milella, A.
Reina, G.
Douillard, B.
Author_xml – sequence: 1
  givenname: A.
  surname: Milella
  fullname: Milella, A.
  email: milella@ba.issia.cnr.it
  organization: Inst. of Intell. Syst. for Autom. (ISSIA), Nat. Res. Council (CNR), Bari, Italy
– sequence: 2
  givenname: G.
  surname: Reina
  fullname: Reina, G.
  email: giulio.reina@unisalento.it
  organization: Dept. of Eng. for Innovation, Univ. of Salento, Lecce, Italy
– sequence: 3
  givenname: J.
  surname: Underwood
  fullname: Underwood, J.
  email: j.underwood@acfr.usyd.edu.au
  organization: Australian Centre for Field Robot., Univ. of Sydney, Sydney, NSW, Australia
– sequence: 4
  givenname: B.
  surname: Douillard
  fullname: Douillard, B.
  email: b.douillard@acfr.usyd.edu.au
  organization: Australian Centre for Field Robot., Univ. of Sydney, Sydney, NSW, Australia
BookMark eNo9kNtKAzEQhqNWsK19APEmL7A15yaXUqwWCgUPN96U7GZSIm1Skt2Cb-8WqzczMN_HD_-M0CCmCAjdUTKllJiH5ev6bcoIpVNFjJBCX6CJmWmqKNNCSKkv0ZBRySuilbpCoz8g5OAfSH2DJqV8EUIomRlt1BB9ztO-DjHELc7W2YxtdPgYSkgR-5RxgZ2vSneA3B_B4W1OXW8U2O4htrY9eSHi1LUu9TrEY8gpnli5Rdfe7gpMznuMPhZP7_OXarV-Xs4fV1WgRLaV1Nop6owz3Egi--FrrcFRLgx4LxriLKtt03dpOHjDtJkpbrhXjCnHFB-j-9_cAACbQw57m7835zfxH8HCWk4
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/IROS.2011.6094548
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781612844558
1612844553
9781612844565
1612844561
EISSN 2153-0866
EndPage 260
ExternalDocumentID 6094548
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IL
6IN
AAJGR
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i105t-588d61d9d939505395fb88ed1349eff4c0da2bac454c3ef928976393f6226d263
IEDL.DBID RIE
ISBN 1612844545
9781612844541
ISSN 2153-0858
IngestDate Wed Jun 26 19:27:41 EDT 2024
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i105t-588d61d9d939505395fb88ed1349eff4c0da2bac454c3ef928976393f6226d263
PageCount 6
ParticipantIDs ieee_primary_6094548
PublicationCentury 2000
PublicationDate 2011-Sept.
PublicationDateYYYYMMDD 2011-09-01
PublicationDate_xml – month: 09
  year: 2011
  text: 2011-Sept.
PublicationDecade 2010
PublicationTitle 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems
PublicationTitleAbbrev IROS
PublicationYear 2011
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001079896
ssj0000669785
Score 1.9269083
Snippet Ground segmentation is critical for a mobile robot to successfully accomplish its tasks in challenging environments. In this paper, we propose a...
SourceID ieee
SourceType Publisher
StartPage 255
SubjectTerms Cameras
Feature extraction
Radar imaging
Sensors
Vehicles
Visualization
Title Combining radar and vision for self-supervised ground segmentation in outdoor environments
URI https://ieeexplore.ieee.org/document/6094548
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVoT3BhaRG7fOCIaZbGyxlalQsgChLiUjmZMaoESdU0_884CaVIXLhESTTKYsuzed4bxi51oBytZyVkpkAMZeJozRknLAzJPkVSAXq882Sq7l_17cjT5FytsTCIWBef4bU_rffyocgqnyobSIpFyMPusI4yusFqrfMpZDrNN29LnV8JSKZuz0VGLRbkWWiP65JeH9NDkpbu6fs6bHc8w8AM7p4epg25Z_vCX51XasMz3v3fJ--x_g-Cjz-ubdM-28L8gO1skA_22BupgrRuD8GXFuyS2xx4AzXn5MnyEj-cKKuFVyYlAvf4D5Io8f2zxSvlfJ7zolpBQeKbiLk-exmPnm8mou20IObkX61EojXIEAyY2JBLRAeXao3guQvRuWEWgI1Sm9GvZDE6Q1Ea6SUTO0neG0QyPmTdvMjxiPFUOV8WptDz_ESppEm3lsKgKHQyMWF6zHp-lGaLhkxj1g7Qyd-3T9l2k8T1RV1nrLtaVnjOOiVUF_X0fwH_Ban2
link.rule.ids 310,311,782,786,791,792,798,27934,54767
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVoOQAXlhax4wNHTLN6OUNRK0pBtEiIS-XENqoESdU0_8_YSUuRuHCJksjK4sQzz-N5bxC64h4zMJ4ZoSlTJKKxgTEnDJEqAv8UUKa05Tv3Rmz4xu-6VibnesWF0Vq75DN9Y3fdWr7K09KGyjoU5iKAsBtoM44YZRVbaxVRAecplsotLsLiMcFdgS5wayEBbMEts4taiwyXiWvBp-WxX695-p7o9F-eRpW8Z33LX7VXnOu53_3fQ--h9g-HDz-vvNM-2tDZAdpZkx9soXcwBokrEIHnUsk5lpnCFdkcA5bFhf40pChn1pwUWmHLAIEWhf74qhlLGZ5mOC8XKofm65y5Nnq9745ve6SutUCmgLAWJOZcUV8JJUIBoAg2JuFcK6teqI2JUk_JIJEpvEoaaiNgngaWSYSGAn5TAQ0PUTPLM32EcMKMTQxj2ir9BAmFzy4lTIQC39BY-MkxatlemswqOY1J3UEnf5--RFu98eNgMugPH07RdhXStSleZ6i5mJf6HDUKVV64X-EbJwitRw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2011+IEEE%2FRSJ+International+Conference+on+Intelligent+Robots+and+Systems&rft.atitle=Combining+radar+and+vision+for+self-supervised+ground+segmentation+in+outdoor+environments&rft.au=Milella%2C+A.&rft.au=Reina%2C+G.&rft.au=Underwood%2C+J.&rft.au=Douillard%2C+B.&rft.date=2011-09-01&rft.pub=IEEE&rft.isbn=9781612844541&rft.issn=2153-0858&rft.eissn=2153-0866&rft.spage=255&rft.epage=260&rft_id=info:doi/10.1109%2FIROS.2011.6094548&rft.externalDocID=6094548
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2153-0858&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2153-0858&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2153-0858&client=summon