Chemokine receptor expression on resident and inflammatory cells in the brain of macaques with simian immunodeficiency virus encephalitis

Although the mechanisms of human immunodeficiency virus (HIV) neuroinvasion, neuronal injury, and subsequent development of HIV-1-associated AIDS dementia complex are not fully understood, a correlation between monocyte/macrophage infiltrates in the brain and neurological disease exists. In light of...

Full description

Saved in:
Bibliographic Details
Published in:The American journal of pathology Vol. 152; no. 3; pp. 659 - 665
Main Authors: Westmoreland, SV, Rottman, JB, Williams, KC, Lackner, AA, Sasseville, VG
Format: Journal Article
Language:English
Published: Bethesda, MD ASIP 01-03-1998
American Society for Investigative Pathology
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Although the mechanisms of human immunodeficiency virus (HIV) neuroinvasion, neuronal injury, and subsequent development of HIV-1-associated AIDS dementia complex are not fully understood, a correlation between monocyte/macrophage infiltrates in the brain and neurological disease exists. In light of the many potential roles that chemokines and chemokine receptors may play in HIV neuropathogenesis, we sought to describe their pattern of expression in the SIV-infected rhesus macaque model of HIV encephalitis. We previously demonstrated elevated expression of the chemokines macrophage inflammatory protein (MIP)-1alpha, MIP-1beta, RANTES, and interferon-inducible protein (IP)-10 in brain of macaque monkeys with SIV encephalitis. In this study, we demonstrate that the corresponding chemokine receptors CCR3, CCR5, CXCR3, and CXCR4 are expressed in perivascular infiltrates in these same tissues. In addition, we detected CCR3, CCR5, and CXCR4 on subpopulations of large hippocampal and neocortical pyramidal neurons and on glial cells in both normal and encephalitic brain. These findings suggest that multiple chemokines and their receptors contribute to monocyte and lymphocyte recruitment to the brain in SIV encephalitis. Furthermore, the expression of known HIV/SIV co-receptors on neurons suggests a possible mechanism whereby HIV or SIV can directly interact with these cells, disrupting their normal physiological function and contributing to the pathogenesis of AIDS dementia complex.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0002-9440
1525-2191