Aberrant methylation of the cyclooxygenase 2 CpG island in colorectal tumors
Cyclooxygenases (COXs) are key enzymes that convert arachidonic acid to prostaglandins. Overexpression of one of the COX isozymes, COX2, has been shown to play an important role in colorectal cancer progression. Recently, however, low expression of COX2 has been reported in a subset of colorectal an...
Saved in:
Published in: | Cancer research (Chicago, Ill.) Vol. 60; no. 15; pp. 4044 - 4048 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Philadelphia, PA
American Association for Cancer Research
01-08-2000
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Cyclooxygenases (COXs) are key enzymes that convert arachidonic acid to prostaglandins. Overexpression of one of the COX isozymes, COX2, has been shown to play an important role in colorectal cancer progression. Recently, however, low expression of COX2 has been reported in a subset of colorectal and gastric cancers. Aberrant CpG island methylation and associated transcriptional silencing are common in colorectal cancer, and we therefore investigated the potential role of methylation in the transcriptional silencing of COX2. We examined the methylation status of the COX2 5' CpG island in a series of tumor cell lines. Among the 33 cell lines examined, dense methylation (>70%) of COX2 was detected in 5 cell lines, and partial methylation was detected in 10 cell lines. Detailed methylation mapping using bisulfite genomic sequencing revealed that loss of expression of COX2 mRNA was closely correlated with methylation of a region upstream of exon 1, and expression could be restored by demethylation using the DNA methyltransferase inhibitor 5-aza-deoxycytidine. Aberrant methylation of COX2 was also detected in 12 of 92 (13%) unselected sporadic primary colorectal cancers and 7 of 50 (14%) colorectal adenomas. COX2 methylation was strongly associated with the presence of the CpG island methylator phenotype (P<0.01), inversely related to p53 gene mutation (P<0.01), and unrelated to microsatellite instability status. We propose that COX2 expression in colorectal tumors is modulated by functional factors that favor high expression and by the CpG island methylator phenotype that favors silencing in a subset of cases. These results raise the possibility that tumors with COX2 methylation may be less sensitive to treatment using specific COX2 inhibitors. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0008-5472 1538-7445 |