MG-160. A novel sialoglycoprotein of the medial cisternae of the Golgi apparatus [published eeratum appears in J Biol Chem 1989 Mar 5;264(7):4264]

A monoclonal antibody (mAb 10A8), derived from mice immunized with fractions of the Golgi apparatus from rat brain neurons, was exploited to isolate and partially characterize a novel glycoprotein of 160 kDa apparent molecular mass which was localized by immunoelectron microscopy in medial cisternae...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry Vol. 264; no. 1; pp. 646 - 653
Main Authors: Gonatas, J O, Mezitis, S G, Stieber, A, Fleischer, B, Gonatas, N K
Format: Journal Article
Language:English
Published: United States American Society for Biochemistry and Molecular Biology 05-01-1989
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A monoclonal antibody (mAb 10A8), derived from mice immunized with fractions of the Golgi apparatus from rat brain neurons, was exploited to isolate and partially characterize a novel glycoprotein of 160 kDa apparent molecular mass which was localized by immunoelectron microscopy in medial cisternae of the Golgi apparatus of neurons, glia, pituitary cells, and rat pheochromocytoma (PC 12). The yield of immunoaffinity purified protein was 0.9 microgram/g of rat brain and represented 3% of the Golgi protein; the protein contained asparagine-linked carbohydrates and sialic acid and N-acetylglucosamine residues; unreduced protein had a greater electrophoretic mobility (130 kDa) consistent with the presence of intrachain disulfide bonds. The bulk of the glycoprotein resided within the membrane and/or luminal face of the Golgi cisternae. After extraction with Triton X-114, the glycoprotein was found in both aqueous and detergent phases. The monoclonal antibody did not inhibit the activities of Golgi enzymes or the uptake of nucleotide sugars by intact Golgi vesicles. The findings indicate that the 160-kDa glycoprotein is a specific constituent of medial Golgi cisternae. The results of this study lend support to the hypothesis that the distributions of glycosyltransferases in the Golgi apparatus are cell specific, since in neurons this sialic acid containing glycoprotein is found in medial rather than in trans and/or in the trans Golgi reticulum cisternae, where sialyltransferases have been localized in other cells. Alternatively, resident neuronal Golgi sialoglycoproteins may acquire sialic acid in trans elements of the apparatus and then shuttle back in medial cisternae.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0021-9258
1083-351X