Enhanced Photocatalytic Activity of Surface‐Modified TiO2 with Bimetallic AuPd Nanoalloys for Hydrogen Generation

Herein, commercial titania (TiO2‐P25) is modified with mono‐ and bi‐metallic (Au, Pd, and AuPd) nanoparticles synthesized by chemical reduction method using NaBH4 as a strong reducing agent at room temperature. Bimetallic AuPd nanoalloys homogeneous in size and well dispersed on the TiO2 surface are...

Full description

Saved in:
Bibliographic Details
Published in:Solar RRL Vol. 8; no. 13
Main Authors: Méndez‐Medrano, Ana Andrea, Bahena‐Uribe, Daniel, Dragoe, Diana, Clavaguéra, Carine, Colbeau‐Justin, Christophe, Palomares Báez, Juan Pedro, Rodríguez‐López, José Luis, Remita, Hynd
Format: Journal Article
Language:English
Published: Wiley 01-07-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Herein, commercial titania (TiO2‐P25) is modified with mono‐ and bi‐metallic (Au, Pd, and AuPd) nanoparticles synthesized by chemical reduction method using NaBH4 as a strong reducing agent at room temperature. Bimetallic AuPd nanoalloys homogeneous in size and well dispersed on the TiO2 surface are obtained. The charge‐carrier dynamics, which is a key factor in photocatalysis, is studied by time‐resolved microwave conductivity. The results reveal that surface modification plays a crucial role in charge‐carrier separation, increasing the activity under UV–vis light irradiation. The bimetallic AuPd nanoalloys formation is confirmed by high‐angle annular dark field scanning transmission electron microscopy and corroborated by semiempirical molecular dynamics simulations (Gupta‐LAMMPS). The surface‐modified TiO2 with bimetallic AuPd nanoalloys exhibits higher photocatalytic activity compared to TiO2 modified with their monometallic counterparts. The experimental results are also supported by density functional theory and density functional tight binding calculations, which show that alloying AuPd with low Pd content presents significant synergetic effects for hydrogen generation under UV–vis light from aqueous triethanolamine solutions. Additionally, the AuPd/TiO2 photocatalysts are stable with cycling. Surface‐modified TiO2 with bimetallic AuPd nanoalloys exhibit high photocatalytic activity for H2 production. Alloying Au with low Pd content presents significant synergetic effects for hydrogen generation under UV–vis light. These findings are supported by molecular quantum‐level calculations.
AbstractList Herein, commercial titania (TiO2‐P25) is modified with mono‐ and bi‐metallic (Au, Pd, and AuPd) nanoparticles synthesized by chemical reduction method using NaBH4 as a strong reducing agent at room temperature. Bimetallic AuPd nanoalloys homogeneous in size and well dispersed on the TiO2 surface are obtained. The charge‐carrier dynamics, which is a key factor in photocatalysis, is studied by time‐resolved microwave conductivity. The results reveal that surface modification plays a crucial role in charge‐carrier separation, increasing the activity under UV–vis light irradiation. The bimetallic AuPd nanoalloys formation is confirmed by high‐angle annular dark field scanning transmission electron microscopy and corroborated by semiempirical molecular dynamics simulations (Gupta‐LAMMPS). The surface‐modified TiO2 with bimetallic AuPd nanoalloys exhibits higher photocatalytic activity compared to TiO2 modified with their monometallic counterparts. The experimental results are also supported by density functional theory and density functional tight binding calculations, which show that alloying AuPd with low Pd content presents significant synergetic effects for hydrogen generation under UV–vis light from aqueous triethanolamine solutions. Additionally, the AuPd/TiO2 photocatalysts are stable with cycling. Surface‐modified TiO2 with bimetallic AuPd nanoalloys exhibit high photocatalytic activity for H2 production. Alloying Au with low Pd content presents significant synergetic effects for hydrogen generation under UV–vis light. These findings are supported by molecular quantum‐level calculations.
Herein, commercial titania (TiO$_2$-P25) is modified with mono- and bi-metallic (Au, Pd, and AuPd) nanoparticles synthesized by chemical reduction method using NaBH4 as a strong reducing agent at room temperature. Bimetallic AuPd nanoalloys homogeneous in size and well dispersed on the TiO$_2$ surface are obtained. The charge-carrier dynamics, which is a key factor in photocatalysis, is studied by time-resolved microwave conductivity. The results reveal that surface modification plays a crucial role in charge-carrier separation, increasing the activity under UV–vis light irradiation. The bimetallic AuPd nanoalloys formation is confirmed by high-angle annular dark field scanning transmission electron microscopy and corroborated by semiempirical molecular dynamics simulations (Gupta-LAMMPS). The surface-modified TiO$_2$ with bimetallic AuPd nanoalloys exhibits higher photocatalytic activity compared to TiO$_2$ modified with their monometallic counterparts. The experimental results are also supported by density functional theory and density functional tight binding calculations, which show that alloying AuPd with low Pd content presents significant synergetic effects for hydrogen generation under UV–vis light from aqueous triethanolamine solutions. Additionally, the AuPd/TiO$_2$ photocatalysts are stable with cycling.
Author Méndez‐Medrano, Ana Andrea
Remita, Hynd
Clavaguéra, Carine
Rodríguez‐López, José Luis
Bahena‐Uribe, Daniel
Dragoe, Diana
Colbeau‐Justin, Christophe
Palomares Báez, Juan Pedro
Author_xml – sequence: 1
  givenname: Ana Andrea
  orcidid: 0009-0001-6074-3186
  surname: Méndez‐Medrano
  fullname: Méndez‐Medrano, Ana Andrea
  organization: Instituto Potosino de Investigación Científica y Tecnológica, A.C
– sequence: 2
  givenname: Daniel
  orcidid: 0000-0002-5015-7239
  surname: Bahena‐Uribe
  fullname: Bahena‐Uribe, Daniel
  organization: CINVESTAV
– sequence: 3
  givenname: Diana
  orcidid: 0000-0002-8536-1205
  surname: Dragoe
  fullname: Dragoe, Diana
  organization: Université Paris‐Saclay
– sequence: 4
  givenname: Carine
  orcidid: 0000-0001-5531-2333
  surname: Clavaguéra
  fullname: Clavaguéra, Carine
  organization: Université Paris‐Saclay
– sequence: 5
  givenname: Christophe
  orcidid: 0000-0003-2343-5878
  surname: Colbeau‐Justin
  fullname: Colbeau‐Justin, Christophe
  organization: Université Paris‐Saclay
– sequence: 6
  givenname: Juan Pedro
  orcidid: 0000-0001-5577-1337
  surname: Palomares Báez
  fullname: Palomares Báez, Juan Pedro
  organization: Universidad Autónoma de Chihuahua
– sequence: 7
  givenname: José Luis
  orcidid: 0000-0002-2875-9022
  surname: Rodríguez‐López
  fullname: Rodríguez‐López, José Luis
  email: jlrdz@ipicyt.edu.mx
  organization: Instituto Potosino de Investigación Científica y Tecnológica, A.C
– sequence: 8
  givenname: Hynd
  orcidid: 0000-0003-3698-9327
  surname: Remita
  fullname: Remita, Hynd
  email: hynd.remita@universite-paris-saclay.fr
  organization: Université Paris‐Saclay
BackLink https://hal.science/hal-04679858$$DView record in HAL
BookMark eNpNkLFOwzAQhi1UJErpyuyVIcWOU8ceS1VapEArWiQ2y3VsYpTaKEmpsvEIPCNPgqOiiunufn3_6e6_BD3nnQbgGqMRRii-rX1ZjWIUJwhhRM9APyY0jTBnr71__QUY1vU7CoYkSRnFfVDPXCGd0jlcFb7xSjaybBur4EQ19tM2LfQGrveVkUr_fH0_-twaG-iNXcbwYJsC3tmdDqay8-xXOXySzofRtzU0voKLNq_8m3Zwrp2uZGO9uwLnRpa1Hv7VAXi5n22miyhbzh-mkywqYsJptMUk1ZhTE65VnDOUSG3Cf5xuyTYOOiMMS0oxNakhOM2JzKnKERsnlKaKkAG4Oe4tZCk-KruTVSu8tGIxyUSnoYSmnI3ZJw4sP7IHW-r2RGMkunhFF684xSvWy-z5NJFfAW5zsw
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 1XC
VOOES
DOI 10.1002/solr.202400106
DatabaseName Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2367-198X
EndPage n/a
ExternalDocumentID oai_HAL_hal_04679858v1
SOLR202400106
Genre article
GrantInformation_xml – fundername: CONACYT‐Mexico
  funderid: 995288
GroupedDBID 0R~
1OC
33P
AAHHS
AANLZ
AAZKR
ABCUV
ACCFJ
ACCZN
ACGFS
ACPOU
ACXQS
ADBBV
ADKYN
ADXAS
ADZMN
AEEZP
AEIGN
AEQDE
AEUYR
AFBPY
AFFPM
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ARCSS
BFHJK
BMXJE
DCZOG
EBS
EJD
HGLYW
LATKE
LEEKS
LOXES
LUTES
LYRES
MEWTI
O9-
P2W
ROL
SUPJJ
WXSBR
ZZTAW
1XC
VOOES
ID FETCH-LOGICAL-h2396-b137e196f024c99804aef40096b3b296f8381a6616f7f317d3ad6cd0854667c33
IEDL.DBID 33P
ISSN 2367-198X
IngestDate Wed Oct 09 06:32:47 EDT 2024
Sat Aug 24 00:56:14 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords Nanoparticles
solar fuels
hydrogen generations
photocalaysis
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-h2396-b137e196f024c99804aef40096b3b296f8381a6616f7f317d3ad6cd0854667c33
ORCID 0000-0002-8536-1205
0000-0003-2343-5878
0000-0001-5577-1337
0000-0003-3698-9327
0000-0002-5015-7239
0000-0001-5531-2333
0000-0002-2875-9022
0009-0001-6074-3186
OpenAccessLink https://hal.science/hal-04679858
PageCount 12
ParticipantIDs hal_primary_oai_HAL_hal_04679858v1
wiley_primary_10_1002_solr_202400106_SOLR202400106
PublicationCentury 2000
PublicationDate July 2024
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: July 2024
PublicationDecade 2020
PublicationTitle Solar RRL
PublicationYear 2024
Publisher Wiley
Publisher_xml – name: Wiley
References 2022; 330
2007; 107
2012; 242
2013; 1
2019; 10
2006; 38
2009; 113
2020; 12
2013; 6
2018; 42
2019; 123
2019; 244
2019; 242
2020; 8
2010; 26
2006; 61
2018; 5
2015; 40
2024; 8
2015; 43
2013; 117
2014; 16
2008; 317
2011; 22
2011; 21
1984
2020; 211
2022; 607
2020; 45
2017; 121
2008; 112
2014; 8
2003; 125
2016; 191
2012; 22
1990; 92
2011; 257
2015; 15
2019; 9
2015; 6
2015; 5
2009; 21
2022; 271
2021; 420
2023; 15
2019; 32
2015; 54
2015; 121
2011; 32
2014; 2014
1992
2020; 267
2020; 32
2015; 7
2012; 33
2016; 120
2016; 57
2016; 4
2010; 43
2016; 7
2012; 2
2006; 45
2020; 152
2020; 153
2022; 5
2010; 216
2019; 43
2008; 49
2017; 13
2014; 38
2010; 132
2005; 7
2018
2020; 156
2022; 469
2009; 38
2016; 8
2007; 46
References_xml – volume: 244
  start-page: 1021
  year: 2019
  publication-title: Appl. Catal. B
– volume: 216
  start-page: 179
  year: 2010
  publication-title: J. Photochem. Photobiol.
– volume: 92
  start-page: 5397
  year: 1990
  publication-title: J. Chem. Phys.
– volume: 120
  start-page: 5143
  year: 2016
  publication-title: J. Phys. Chem. C
– volume: 267
  start-page: 118660
  year: 2020
  publication-title: Appl. Catal. B
– volume: 12
  start-page: 23424
  year: 2020
  publication-title: Nanoscale
– volume: 2
  start-page: 73
  year: 2012
  publication-title: Wiley Interdiscip. Rev. Comput. Mol. Sci.
– volume: 38
  start-page: 569
  year: 2006
  publication-title: Enzyme Microb. Technol.
– volume: 330
  start-page: 133205
  year: 2022
  publication-title: Mater. Lett.
– volume: 132
  start-page: 10398
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 38
  start-page: 5279
  year: 2014
  publication-title: New J. Chem.
– start-page: 129
  year: 2018
  end-page: 164
– volume: 8
  start-page: 12968
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 153
  start-page: 034705
  year: 2020
  publication-title: J. Chem. Phys.
– volume: 2014
  start-page: 208920
  year: 2014
  publication-title: J. Nanomater.
– volume: 26
  start-page: 1271
  year: 2010
  publication-title: Langmuir
– volume: 5
  start-page: 11482
  year: 2015
  publication-title: Sci. Rep.
– volume: 156
  start-page: 1008
  year: 2020
  publication-title: Renewable Energy
– volume: 242
  start-page: 284
  year: 2019
  publication-title: Appl. Catal. B
– volume: 21
  start-page: 3744
  year: 2011
  publication-title: Adv. Funct. Mater.
– volume: 420
  start-page: 129881
  year: 2021
  publication-title: J. Chem. Eng.
– volume: 33
  start-page: 580
  year: 2012
  publication-title: J. Comput. Chem.
– volume: 15
  start-page: 7510
  year: 2023
  publication-title: Nanoscale
– volume: 21
  start-page: 1612
  year: 2009
  publication-title: Chem. Mater.
– volume: 40
  start-page: 4951
  year: 2015
  publication-title: Int. J. Hydrogen Energy
– volume: 45
  start-page: 4776
  year: 2006
  publication-title: Angew. Chem. Int. Ed.
– volume: 9
  start-page: 4678
  year: 2019
  publication-title: Catal. Sci. Technol.
– volume: 21
  start-page: 3677
  year: 2009
  publication-title: Chem. Mater.
– volume: 57
  start-page: 850
  year: 2016
  publication-title: Renewable Sustainable Energy Rev.
– volume: 49
  start-page: 1820
  year: 2008
  publication-title: Energy Convers. Manag.
– volume: 112
  start-page: 10740
  year: 2008
  publication-title: J. Phys. Chem. C
– volume: 107
  start-page: 2891
  year: 2007
  publication-title: Chem. Rev.
– volume: 8
  start-page: 3490
  year: 2014
  publication-title: ACS Nano
– volume: 6
  start-page: 2153
  year: 2015
  publication-title: Chem. Sci.
– volume: 152
  start-page: 124101
  year: 2020
  publication-title: J. Chem. Phys.
– volume: 43
  start-page: 1151
  year: 2015
  publication-title: Renewable Sustainable Energy Rev.
– volume: 257
  start-page: 2717
  year: 2011
  publication-title: Appl. Surf. Sci.
– volume: 10
  start-page: 1428
  year: 2019
  publication-title: Nat. Commun.
– volume: 15
  start-page: 42637
  year: 2023
  publication-title: ACS Appl. Mater. Interfaces
– volume: 61
  start-page: 789
  year: 2006
  publication-title: Oil Gas Sci. Technol.
– volume: 43
  start-page: 4349
  year: 2019
  publication-title: New J. Chem.
– volume: 43
  start-page: 599
  year: 2015
  publication-title: Renewable Sustainable Energy Rev.
– volume: 317
  start-page: 366
  year: 2008
  publication-title: Colloids Surf.
– volume: 121
  start-page: 54
  year: 2015
  publication-title: Chemosphere
– volume: 13
  start-page: 1989
  year: 2017
  publication-title: J. Chem. Theory Comput.
– volume: 123
  start-page: 19479
  year: 2019
  publication-title: J. Phys. Chem. C
– volume: 607
  start-page: 312
  year: 2022
  publication-title: J. Colloid Interface Sci.
– volume: 38
  start-page: 253
  year: 2009
  publication-title: Chem. Soc. Rev.
– volume: 43
  start-page: 49
  year: 2010
  publication-title: Gold Bull.
– volume: 120
  start-page: 25010
  year: 2016
  publication-title: J. Phys. Chem. C
– volume: 46
  start-page: 1884
  year: 2007
  publication-title: Inorg. Chem.
– volume: 121
  start-page: 14302
  year: 2017
  publication-title: J. Phys. Chem. C
– volume: 32
  start-page: 354001
  year: 2020
  publication-title: J. Condens. Matter Phys.
– volume: 16
  start-page: 20382
  year: 2014
  publication-title: Phys. Chem. Chem. Phys.
– volume: 117
  start-page: 1955
  year: 2013
  publication-title: J. Phys. Chem. C
– volume: 125
  start-page: 6306
  year: 2003
  publication-title: J. Am. Chem. Soc.
– year: 1992
– volume: 45
  start-page: 28553
  year: 2020
  publication-title: Int. J. Hydrog. Energy
– volume: 211
  start-page: 522
  year: 2020
  publication-title: Sol. Energy
– volume: 191
  start-page: 18
  year: 2016
  publication-title: Appl. Catal. B
– volume: 4
  start-page: 10142
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 15
  start-page: 51
  year: 2015
  publication-title: Nano Lett.
– volume: 5
  start-page: 9733
  year: 2018
  publication-title: Mater. Today: Proc.
– volume: 5
  start-page: 16196
  year: 2022
  publication-title: ACS Appl. Nano Mater.
– volume: 7
  start-page: 1077
  year: 2005
  publication-title: Org. Lett.
– volume: 5
  start-page: 2778
  year: 2015
  publication-title: ACS Catal.
– year: 1984
– volume: 1
  start-page: 10829
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 22
  start-page: 117
  year: 2012
  publication-title: Trans. Nonferrous Met. Soc. China
– volume: 16
  start-page: 19790
  year: 2014
  publication-title: Phys. Chem. Chem. Phys.
– volume: 469
  start-page: 214665
  year: 2022
  publication-title: Coord. Chem. Rev.
– volume: 54
  start-page: 4429
  year: 2015
  publication-title: Angew. Chem. Int. Ed.
– volume: 5
  start-page: 3924
  year: 2015
  publication-title: ACS Catal.
– volume: 8
  start-page: 20667
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 307
  year: 2015
  publication-title: Nanomicro Lett.
– volume: 7
  start-page: 480
  year: 2016
  publication-title: J. Phys. Chem. Lett.
– volume: 271
  start-page: 108171
  year: 2022
  publication-title: Comput. Phys. Commun.
– volume: 42
  start-page: 14128
  year: 2018
  publication-title: New. J. Chem.
– volume: 113
  start-page: 9141
  year: 2009
  publication-title: J. Phys. Chem. C
– volume: 6
  start-page: 1983
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 8
  start-page: 195
  year: 2024
  publication-title: Nat. Rev. Chem.
– volume: 22
  start-page: 305609
  year: 2011
  publication-title: Nanotechnology
– volume: 32
  start-page: 014108
  year: 2019
  publication-title: Phys. Rev. B
– volume: 242
  start-page: 34
  year: 2012
  publication-title: J. Photochem. Photobiol.
– volume: 32
  start-page: 1456
  year: 2011
  publication-title: J. Comput. Chem.
SSID ssj0002447861
Score 2.3122394
Snippet Herein, commercial titania (TiO2‐P25) is modified with mono‐ and bi‐metallic (Au, Pd, and AuPd) nanoparticles synthesized by chemical reduction method using...
Herein, commercial titania (TiO$_2$-P25) is modified with mono- and bi-metallic (Au, Pd, and AuPd) nanoparticles synthesized by chemical reduction method using...
SourceID hal
wiley
SourceType Open Access Repository
Publisher
SubjectTerms bimetallic cocatalysts
Catalysis
Chemical Sciences
hydrogen generation
Material chemistry
photocatalysis
solar fuels
synergetic effects
Title Enhanced Photocatalytic Activity of Surface‐Modified TiO2 with Bimetallic AuPd Nanoalloys for Hydrogen Generation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsolr.202400106
https://hal.science/hal-04679858
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LToNAFIYn2pUuvBvrLRPjlrQwFIZl1TYsqm1sTbojAzMTmiiYUky68xF8Rp_Ec4aKdas7IDMEzlzOf-byDSHX2lYscEVgsSD2LVd62hI8DizPESBPE659cxZBOPYfpvyuh5icehd_xYeoB9ywZZj-Ghu4iIvWDzQUigZ5nrgG0jbMbQgVzB4ONqoHWcB3-dwwUxFUZkGAPf0GN7ad1u83gHNJcS3kukY1Tqa_-__P2yM7K4FJu1WN2CcbKjsg22vYwUNS9LLUTPzTUZovcjOCs4TktJtUZ0nQXNNxOdciUZ_vH_e5nGlQqnQyGzoUB27pzexFQaZnzFOOJIU-OscZ_GVBQQTTcCnnOdRMWkGtseyPyFO_N7kNrdXhC1bqsMCzYpv5Cpqnhl9IICZru0JpFyOemMUOPOfg6wV4d0_7GkSIZEJ6iQQF53qenzB2TBpZnqkTQl2mOoHNEx6D-opBMipMh6Qwrl2peZNcgeWj1wqvESHwOuwOInwG0bsf8A5_s5vEMeauk1W8ZSdCQ0e1oaPxcPBY353-JdMZ2cLrak3uOWks5qW6IJuFLC9N7foCWabPkA
link.rule.ids 230,315,782,786,887,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI5gHIADb8R4RohrtbXp2vRYYFMR3UNsSLtVbZNok6BF24q0Gz-B38gvwW63Mq6IY6Okah07_uwknwm5Ubpkjhk6GnMiWzOFpbSQR45mGSHA05grO69F4PXtzpDfN5Emx13ehSn4IcqEG1pGvl6jgWNCuvbDGgpzg4SeeAhSR9LtDdMCbcRbHKxXplnAe9k8Z01FqjINQuzhkrqxbtR-vwLcywhPQ66i1NzNtHb_4QP3yM4CY1K3UIp9siaTA7K9wjx4SKbNZJTv_dPeKJ2leRJnDt2pGxflJGiqaD-bqDCWXx-f7VSMFYBVOhh3DYq5W3o7fpUw6AXHZD1BYZlOcRN_PqWAg6k3F5MUlJMWvNY4_UfkudUc3Hnaov6CNjKYY2mRzmwJFqrgF2IIy-pmKJWJQU_EIgPaObj7EBy8pWwFOESwUFixABBnWpYdM3ZMKkmayBNCTSYbjs5jHgEAiwA1SuyHZGFcmULxKrkG0QdvBcNGgJzXnusH2AYBvO3wBn_Xq8TI5V12KyiXjQAFHZSCDvpd_6l8Ov3LoCuy6Q3afuA_dB7PyBa2F0d0z0llNsnkBVmfiuwyV7VvkZXTuA
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3dToMwFMcbnYnRC7-N87Mx3pINyqBcTrcF49yIm8nuCNA2LFFYtmGyOx_BZ_RJPAcmzlu9pGkJnLac_zktvxJyo3TJHDNwNOaEtmYKS2kBDx3NMgKQpxFXdn4WgTuweyPeaiMmp_yLv-BDlAk3nBn59xon-ESo2g80FLoGeZ64B1JH5vaGCVoc6fmMeWWWBZyXzXNoKpLKNIiwR9_kxrpR-30L8C4xboZcFam5l-ns_v_59sjOUmHSZjEk9smaTA7I9gp38JDM2kmcr_xTL07naZ7CWUB12oyKwyRoquggm6ogkp_vH4-pGCuQqnQ47hsUM7f0dvwqodELtsk8QeEjneIS_mJGQQVTdyGmKQxNWlCtsfOPyHOnPbxzteXpC1psMMfSQp3ZEuangleIICirm4FUJoY8IQsNKOfg7ANw75ayFagQwQJhRQIknGlZdsTYMakkaSJPCDWZbDg6j3gI8isEzSixHqLCuDKF4lVyDZb3JwVfw0fitdvs-lgG4bvt8AZ_06vEyM1dViuAy4aPhvZLQ_uDfvepvDr9S6Mrsum1On73vvdwRrawuNife04q82kmL8j6TGSX-UD7AhxG0l4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Photocatalytic+Activity+of+Surface%E2%80%90Modified+TiO2+with+Bimetallic+AuPd+Nanoalloys+for+Hydrogen+Generation&rft.jtitle=Solar+RRL&rft.au=M%C3%A9ndez%E2%80%90Medrano%2C+Ana+Andrea&rft.au=Bahena%E2%80%90Uribe%2C+Daniel&rft.au=Dragoe%2C+Diana&rft.au=Clavagu%C3%A9ra%2C+Carine&rft.date=2024-07-01&rft.issn=2367-198X&rft.eissn=2367-198X&rft.volume=8&rft.issue=13&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsolr.202400106&rft.externalDBID=10.1002%252Fsolr.202400106&rft.externalDocID=SOLR202400106
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2367-198X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2367-198X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2367-198X&client=summon