Enhanced Photocatalytic Activity of Surface‐Modified TiO2 with Bimetallic AuPd Nanoalloys for Hydrogen Generation
Herein, commercial titania (TiO2‐P25) is modified with mono‐ and bi‐metallic (Au, Pd, and AuPd) nanoparticles synthesized by chemical reduction method using NaBH4 as a strong reducing agent at room temperature. Bimetallic AuPd nanoalloys homogeneous in size and well dispersed on the TiO2 surface are...
Saved in:
Published in: | Solar RRL Vol. 8; no. 13 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Wiley
01-07-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Herein, commercial titania (TiO2‐P25) is modified with mono‐ and bi‐metallic (Au, Pd, and AuPd) nanoparticles synthesized by chemical reduction method using NaBH4 as a strong reducing agent at room temperature. Bimetallic AuPd nanoalloys homogeneous in size and well dispersed on the TiO2 surface are obtained. The charge‐carrier dynamics, which is a key factor in photocatalysis, is studied by time‐resolved microwave conductivity. The results reveal that surface modification plays a crucial role in charge‐carrier separation, increasing the activity under UV–vis light irradiation. The bimetallic AuPd nanoalloys formation is confirmed by high‐angle annular dark field scanning transmission electron microscopy and corroborated by semiempirical molecular dynamics simulations (Gupta‐LAMMPS). The surface‐modified TiO2 with bimetallic AuPd nanoalloys exhibits higher photocatalytic activity compared to TiO2 modified with their monometallic counterparts. The experimental results are also supported by density functional theory and density functional tight binding calculations, which show that alloying AuPd with low Pd content presents significant synergetic effects for hydrogen generation under UV–vis light from aqueous triethanolamine solutions. Additionally, the AuPd/TiO2 photocatalysts are stable with cycling.
Surface‐modified TiO2 with bimetallic AuPd nanoalloys exhibit high photocatalytic activity for H2 production. Alloying Au with low Pd content presents significant synergetic effects for hydrogen generation under UV–vis light. These findings are supported by molecular quantum‐level calculations. |
---|---|
AbstractList | Herein, commercial titania (TiO2‐P25) is modified with mono‐ and bi‐metallic (Au, Pd, and AuPd) nanoparticles synthesized by chemical reduction method using NaBH4 as a strong reducing agent at room temperature. Bimetallic AuPd nanoalloys homogeneous in size and well dispersed on the TiO2 surface are obtained. The charge‐carrier dynamics, which is a key factor in photocatalysis, is studied by time‐resolved microwave conductivity. The results reveal that surface modification plays a crucial role in charge‐carrier separation, increasing the activity under UV–vis light irradiation. The bimetallic AuPd nanoalloys formation is confirmed by high‐angle annular dark field scanning transmission electron microscopy and corroborated by semiempirical molecular dynamics simulations (Gupta‐LAMMPS). The surface‐modified TiO2 with bimetallic AuPd nanoalloys exhibits higher photocatalytic activity compared to TiO2 modified with their monometallic counterparts. The experimental results are also supported by density functional theory and density functional tight binding calculations, which show that alloying AuPd with low Pd content presents significant synergetic effects for hydrogen generation under UV–vis light from aqueous triethanolamine solutions. Additionally, the AuPd/TiO2 photocatalysts are stable with cycling.
Surface‐modified TiO2 with bimetallic AuPd nanoalloys exhibit high photocatalytic activity for H2 production. Alloying Au with low Pd content presents significant synergetic effects for hydrogen generation under UV–vis light. These findings are supported by molecular quantum‐level calculations. Herein, commercial titania (TiO$_2$-P25) is modified with mono- and bi-metallic (Au, Pd, and AuPd) nanoparticles synthesized by chemical reduction method using NaBH4 as a strong reducing agent at room temperature. Bimetallic AuPd nanoalloys homogeneous in size and well dispersed on the TiO$_2$ surface are obtained. The charge-carrier dynamics, which is a key factor in photocatalysis, is studied by time-resolved microwave conductivity. The results reveal that surface modification plays a crucial role in charge-carrier separation, increasing the activity under UV–vis light irradiation. The bimetallic AuPd nanoalloys formation is confirmed by high-angle annular dark field scanning transmission electron microscopy and corroborated by semiempirical molecular dynamics simulations (Gupta-LAMMPS). The surface-modified TiO$_2$ with bimetallic AuPd nanoalloys exhibits higher photocatalytic activity compared to TiO$_2$ modified with their monometallic counterparts. The experimental results are also supported by density functional theory and density functional tight binding calculations, which show that alloying AuPd with low Pd content presents significant synergetic effects for hydrogen generation under UV–vis light from aqueous triethanolamine solutions. Additionally, the AuPd/TiO$_2$ photocatalysts are stable with cycling. |
Author | Méndez‐Medrano, Ana Andrea Remita, Hynd Clavaguéra, Carine Rodríguez‐López, José Luis Bahena‐Uribe, Daniel Dragoe, Diana Colbeau‐Justin, Christophe Palomares Báez, Juan Pedro |
Author_xml | – sequence: 1 givenname: Ana Andrea orcidid: 0009-0001-6074-3186 surname: Méndez‐Medrano fullname: Méndez‐Medrano, Ana Andrea organization: Instituto Potosino de Investigación Científica y Tecnológica, A.C – sequence: 2 givenname: Daniel orcidid: 0000-0002-5015-7239 surname: Bahena‐Uribe fullname: Bahena‐Uribe, Daniel organization: CINVESTAV – sequence: 3 givenname: Diana orcidid: 0000-0002-8536-1205 surname: Dragoe fullname: Dragoe, Diana organization: Université Paris‐Saclay – sequence: 4 givenname: Carine orcidid: 0000-0001-5531-2333 surname: Clavaguéra fullname: Clavaguéra, Carine organization: Université Paris‐Saclay – sequence: 5 givenname: Christophe orcidid: 0000-0003-2343-5878 surname: Colbeau‐Justin fullname: Colbeau‐Justin, Christophe organization: Université Paris‐Saclay – sequence: 6 givenname: Juan Pedro orcidid: 0000-0001-5577-1337 surname: Palomares Báez fullname: Palomares Báez, Juan Pedro organization: Universidad Autónoma de Chihuahua – sequence: 7 givenname: José Luis orcidid: 0000-0002-2875-9022 surname: Rodríguez‐López fullname: Rodríguez‐López, José Luis email: jlrdz@ipicyt.edu.mx organization: Instituto Potosino de Investigación Científica y Tecnológica, A.C – sequence: 8 givenname: Hynd orcidid: 0000-0003-3698-9327 surname: Remita fullname: Remita, Hynd email: hynd.remita@universite-paris-saclay.fr organization: Université Paris‐Saclay |
BackLink | https://hal.science/hal-04679858$$DView record in HAL |
BookMark | eNpNkLFOwzAQhi1UJErpyuyVIcWOU8ceS1VapEArWiQ2y3VsYpTaKEmpsvEIPCNPgqOiiunufn3_6e6_BD3nnQbgGqMRRii-rX1ZjWIUJwhhRM9APyY0jTBnr71__QUY1vU7CoYkSRnFfVDPXCGd0jlcFb7xSjaybBur4EQ19tM2LfQGrveVkUr_fH0_-twaG-iNXcbwYJsC3tmdDqay8-xXOXySzofRtzU0voKLNq_8m3Zwrp2uZGO9uwLnRpa1Hv7VAXi5n22miyhbzh-mkywqYsJptMUk1ZhTE65VnDOUSG3Cf5xuyTYOOiMMS0oxNakhOM2JzKnKERsnlKaKkAG4Oe4tZCk-KruTVSu8tGIxyUSnoYSmnI3ZJw4sP7IHW-r2RGMkunhFF684xSvWy-z5NJFfAW5zsw |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | 1XC VOOES |
DOI | 10.1002/solr.202400106 |
DatabaseName | Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2367-198X |
EndPage | n/a |
ExternalDocumentID | oai_HAL_hal_04679858v1 SOLR202400106 |
Genre | article |
GrantInformation_xml | – fundername: CONACYT‐Mexico funderid: 995288 |
GroupedDBID | 0R~ 1OC 33P AAHHS AANLZ AAZKR ABCUV ACCFJ ACCZN ACGFS ACPOU ACXQS ADBBV ADKYN ADXAS ADZMN AEEZP AEIGN AEQDE AEUYR AFBPY AFFPM AFZJQ AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ARCSS BFHJK BMXJE DCZOG EBS EJD HGLYW LATKE LEEKS LOXES LUTES LYRES MEWTI O9- P2W ROL SUPJJ WXSBR ZZTAW 1XC VOOES |
ID | FETCH-LOGICAL-h2396-b137e196f024c99804aef40096b3b296f8381a6616f7f317d3ad6cd0854667c33 |
IEDL.DBID | 33P |
ISSN | 2367-198X |
IngestDate | Wed Oct 09 06:32:47 EDT 2024 Sat Aug 24 00:56:14 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Keywords | Nanoparticles solar fuels hydrogen generations photocalaysis |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-h2396-b137e196f024c99804aef40096b3b296f8381a6616f7f317d3ad6cd0854667c33 |
ORCID | 0000-0002-8536-1205 0000-0003-2343-5878 0000-0001-5577-1337 0000-0003-3698-9327 0000-0002-5015-7239 0000-0001-5531-2333 0000-0002-2875-9022 0009-0001-6074-3186 |
OpenAccessLink | https://hal.science/hal-04679858 |
PageCount | 12 |
ParticipantIDs | hal_primary_oai_HAL_hal_04679858v1 wiley_primary_10_1002_solr_202400106_SOLR202400106 |
PublicationCentury | 2000 |
PublicationDate | July 2024 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: July 2024 |
PublicationDecade | 2020 |
PublicationTitle | Solar RRL |
PublicationYear | 2024 |
Publisher | Wiley |
Publisher_xml | – name: Wiley |
References | 2022; 330 2007; 107 2012; 242 2013; 1 2019; 10 2006; 38 2009; 113 2020; 12 2013; 6 2018; 42 2019; 123 2019; 244 2019; 242 2020; 8 2010; 26 2006; 61 2018; 5 2015; 40 2024; 8 2015; 43 2013; 117 2014; 16 2008; 317 2011; 22 2011; 21 1984 2020; 211 2022; 607 2020; 45 2017; 121 2008; 112 2014; 8 2003; 125 2016; 191 2012; 22 1990; 92 2011; 257 2015; 15 2019; 9 2015; 6 2015; 5 2009; 21 2022; 271 2021; 420 2023; 15 2019; 32 2015; 54 2015; 121 2011; 32 2014; 2014 1992 2020; 267 2020; 32 2015; 7 2012; 33 2016; 120 2016; 57 2016; 4 2010; 43 2016; 7 2012; 2 2006; 45 2020; 152 2020; 153 2022; 5 2010; 216 2019; 43 2008; 49 2017; 13 2014; 38 2010; 132 2005; 7 2018 2020; 156 2022; 469 2009; 38 2016; 8 2007; 46 |
References_xml | – volume: 244 start-page: 1021 year: 2019 publication-title: Appl. Catal. B – volume: 216 start-page: 179 year: 2010 publication-title: J. Photochem. Photobiol. – volume: 92 start-page: 5397 year: 1990 publication-title: J. Chem. Phys. – volume: 120 start-page: 5143 year: 2016 publication-title: J. Phys. Chem. C – volume: 267 start-page: 118660 year: 2020 publication-title: Appl. Catal. B – volume: 12 start-page: 23424 year: 2020 publication-title: Nanoscale – volume: 2 start-page: 73 year: 2012 publication-title: Wiley Interdiscip. Rev. Comput. Mol. Sci. – volume: 38 start-page: 569 year: 2006 publication-title: Enzyme Microb. Technol. – volume: 330 start-page: 133205 year: 2022 publication-title: Mater. Lett. – volume: 132 start-page: 10398 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 38 start-page: 5279 year: 2014 publication-title: New J. Chem. – start-page: 129 year: 2018 end-page: 164 – volume: 8 start-page: 12968 year: 2020 publication-title: J. Mater. Chem. A – volume: 153 start-page: 034705 year: 2020 publication-title: J. Chem. Phys. – volume: 2014 start-page: 208920 year: 2014 publication-title: J. Nanomater. – volume: 26 start-page: 1271 year: 2010 publication-title: Langmuir – volume: 5 start-page: 11482 year: 2015 publication-title: Sci. Rep. – volume: 156 start-page: 1008 year: 2020 publication-title: Renewable Energy – volume: 242 start-page: 284 year: 2019 publication-title: Appl. Catal. B – volume: 21 start-page: 3744 year: 2011 publication-title: Adv. Funct. Mater. – volume: 420 start-page: 129881 year: 2021 publication-title: J. Chem. Eng. – volume: 33 start-page: 580 year: 2012 publication-title: J. Comput. Chem. – volume: 15 start-page: 7510 year: 2023 publication-title: Nanoscale – volume: 21 start-page: 1612 year: 2009 publication-title: Chem. Mater. – volume: 40 start-page: 4951 year: 2015 publication-title: Int. J. Hydrogen Energy – volume: 45 start-page: 4776 year: 2006 publication-title: Angew. Chem. Int. Ed. – volume: 9 start-page: 4678 year: 2019 publication-title: Catal. Sci. Technol. – volume: 21 start-page: 3677 year: 2009 publication-title: Chem. Mater. – volume: 57 start-page: 850 year: 2016 publication-title: Renewable Sustainable Energy Rev. – volume: 49 start-page: 1820 year: 2008 publication-title: Energy Convers. Manag. – volume: 112 start-page: 10740 year: 2008 publication-title: J. Phys. Chem. C – volume: 107 start-page: 2891 year: 2007 publication-title: Chem. Rev. – volume: 8 start-page: 3490 year: 2014 publication-title: ACS Nano – volume: 6 start-page: 2153 year: 2015 publication-title: Chem. Sci. – volume: 152 start-page: 124101 year: 2020 publication-title: J. Chem. Phys. – volume: 43 start-page: 1151 year: 2015 publication-title: Renewable Sustainable Energy Rev. – volume: 257 start-page: 2717 year: 2011 publication-title: Appl. Surf. Sci. – volume: 10 start-page: 1428 year: 2019 publication-title: Nat. Commun. – volume: 15 start-page: 42637 year: 2023 publication-title: ACS Appl. Mater. Interfaces – volume: 61 start-page: 789 year: 2006 publication-title: Oil Gas Sci. Technol. – volume: 43 start-page: 4349 year: 2019 publication-title: New J. Chem. – volume: 43 start-page: 599 year: 2015 publication-title: Renewable Sustainable Energy Rev. – volume: 317 start-page: 366 year: 2008 publication-title: Colloids Surf. – volume: 121 start-page: 54 year: 2015 publication-title: Chemosphere – volume: 13 start-page: 1989 year: 2017 publication-title: J. Chem. Theory Comput. – volume: 123 start-page: 19479 year: 2019 publication-title: J. Phys. Chem. C – volume: 607 start-page: 312 year: 2022 publication-title: J. Colloid Interface Sci. – volume: 38 start-page: 253 year: 2009 publication-title: Chem. Soc. Rev. – volume: 43 start-page: 49 year: 2010 publication-title: Gold Bull. – volume: 120 start-page: 25010 year: 2016 publication-title: J. Phys. Chem. C – volume: 46 start-page: 1884 year: 2007 publication-title: Inorg. Chem. – volume: 121 start-page: 14302 year: 2017 publication-title: J. Phys. Chem. C – volume: 32 start-page: 354001 year: 2020 publication-title: J. Condens. Matter Phys. – volume: 16 start-page: 20382 year: 2014 publication-title: Phys. Chem. Chem. Phys. – volume: 117 start-page: 1955 year: 2013 publication-title: J. Phys. Chem. C – volume: 125 start-page: 6306 year: 2003 publication-title: J. Am. Chem. Soc. – year: 1992 – volume: 45 start-page: 28553 year: 2020 publication-title: Int. J. Hydrog. Energy – volume: 211 start-page: 522 year: 2020 publication-title: Sol. Energy – volume: 191 start-page: 18 year: 2016 publication-title: Appl. Catal. B – volume: 4 start-page: 10142 year: 2016 publication-title: J. Mater. Chem. A – volume: 15 start-page: 51 year: 2015 publication-title: Nano Lett. – volume: 5 start-page: 9733 year: 2018 publication-title: Mater. Today: Proc. – volume: 5 start-page: 16196 year: 2022 publication-title: ACS Appl. Nano Mater. – volume: 7 start-page: 1077 year: 2005 publication-title: Org. Lett. – volume: 5 start-page: 2778 year: 2015 publication-title: ACS Catal. – year: 1984 – volume: 1 start-page: 10829 year: 2013 publication-title: J. Mater. Chem. A – volume: 22 start-page: 117 year: 2012 publication-title: Trans. Nonferrous Met. Soc. China – volume: 16 start-page: 19790 year: 2014 publication-title: Phys. Chem. Chem. Phys. – volume: 469 start-page: 214665 year: 2022 publication-title: Coord. Chem. Rev. – volume: 54 start-page: 4429 year: 2015 publication-title: Angew. Chem. Int. Ed. – volume: 5 start-page: 3924 year: 2015 publication-title: ACS Catal. – volume: 8 start-page: 20667 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 307 year: 2015 publication-title: Nanomicro Lett. – volume: 7 start-page: 480 year: 2016 publication-title: J. Phys. Chem. Lett. – volume: 271 start-page: 108171 year: 2022 publication-title: Comput. Phys. Commun. – volume: 42 start-page: 14128 year: 2018 publication-title: New. J. Chem. – volume: 113 start-page: 9141 year: 2009 publication-title: J. Phys. Chem. C – volume: 6 start-page: 1983 year: 2013 publication-title: Energy Environ. Sci. – volume: 8 start-page: 195 year: 2024 publication-title: Nat. Rev. Chem. – volume: 22 start-page: 305609 year: 2011 publication-title: Nanotechnology – volume: 32 start-page: 014108 year: 2019 publication-title: Phys. Rev. B – volume: 242 start-page: 34 year: 2012 publication-title: J. Photochem. Photobiol. – volume: 32 start-page: 1456 year: 2011 publication-title: J. Comput. Chem. |
SSID | ssj0002447861 |
Score | 2.3122394 |
Snippet | Herein, commercial titania (TiO2‐P25) is modified with mono‐ and bi‐metallic (Au, Pd, and AuPd) nanoparticles synthesized by chemical reduction method using... Herein, commercial titania (TiO$_2$-P25) is modified with mono- and bi-metallic (Au, Pd, and AuPd) nanoparticles synthesized by chemical reduction method using... |
SourceID | hal wiley |
SourceType | Open Access Repository Publisher |
SubjectTerms | bimetallic cocatalysts Catalysis Chemical Sciences hydrogen generation Material chemistry photocatalysis solar fuels synergetic effects |
Title | Enhanced Photocatalytic Activity of Surface‐Modified TiO2 with Bimetallic AuPd Nanoalloys for Hydrogen Generation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsolr.202400106 https://hal.science/hal-04679858 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LToNAFIYn2pUuvBvrLRPjlrQwFIZl1TYsqm1sTbojAzMTmiiYUky68xF8Rp_Ec4aKdas7IDMEzlzOf-byDSHX2lYscEVgsSD2LVd62hI8DizPESBPE659cxZBOPYfpvyuh5icehd_xYeoB9ywZZj-Ghu4iIvWDzQUigZ5nrgG0jbMbQgVzB4ONqoHWcB3-dwwUxFUZkGAPf0GN7ad1u83gHNJcS3kukY1Tqa_-__P2yM7K4FJu1WN2CcbKjsg22vYwUNS9LLUTPzTUZovcjOCs4TktJtUZ0nQXNNxOdciUZ_vH_e5nGlQqnQyGzoUB27pzexFQaZnzFOOJIU-OscZ_GVBQQTTcCnnOdRMWkGtseyPyFO_N7kNrdXhC1bqsMCzYpv5Cpqnhl9IICZru0JpFyOemMUOPOfg6wV4d0_7GkSIZEJ6iQQF53qenzB2TBpZnqkTQl2mOoHNEx6D-opBMipMh6Qwrl2peZNcgeWj1wqvESHwOuwOInwG0bsf8A5_s5vEMeauk1W8ZSdCQ0e1oaPxcPBY353-JdMZ2cLrak3uOWks5qW6IJuFLC9N7foCWabPkA |
link.rule.ids | 230,315,782,786,887,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI5gHIADb8R4RohrtbXp2vRYYFMR3UNsSLtVbZNok6BF24q0Gz-B38gvwW63Mq6IY6Okah07_uwknwm5Ubpkjhk6GnMiWzOFpbSQR45mGSHA05grO69F4PXtzpDfN5Emx13ehSn4IcqEG1pGvl6jgWNCuvbDGgpzg4SeeAhSR9LtDdMCbcRbHKxXplnAe9k8Z01FqjINQuzhkrqxbtR-vwLcywhPQ66i1NzNtHb_4QP3yM4CY1K3UIp9siaTA7K9wjx4SKbNZJTv_dPeKJ2leRJnDt2pGxflJGiqaD-bqDCWXx-f7VSMFYBVOhh3DYq5W3o7fpUw6AXHZD1BYZlOcRN_PqWAg6k3F5MUlJMWvNY4_UfkudUc3Hnaov6CNjKYY2mRzmwJFqrgF2IIy-pmKJWJQU_EIgPaObj7EBy8pWwFOESwUFixABBnWpYdM3ZMKkmayBNCTSYbjs5jHgEAiwA1SuyHZGFcmULxKrkG0QdvBcNGgJzXnusH2AYBvO3wBn_Xq8TI5V12KyiXjQAFHZSCDvpd_6l8Ov3LoCuy6Q3afuA_dB7PyBa2F0d0z0llNsnkBVmfiuwyV7VvkZXTuA |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3dToMwFMcbnYnRC7-N87Mx3pINyqBcTrcF49yIm8nuCNA2LFFYtmGyOx_BZ_RJPAcmzlu9pGkJnLac_zktvxJyo3TJHDNwNOaEtmYKS2kBDx3NMgKQpxFXdn4WgTuweyPeaiMmp_yLv-BDlAk3nBn59xon-ESo2g80FLoGeZ64B1JH5vaGCVoc6fmMeWWWBZyXzXNoKpLKNIiwR9_kxrpR-30L8C4xboZcFam5l-ns_v_59sjOUmHSZjEk9smaTA7I9gp38JDM2kmcr_xTL07naZ7CWUB12oyKwyRoquggm6ogkp_vH4-pGCuQqnQ47hsUM7f0dvwqodELtsk8QeEjneIS_mJGQQVTdyGmKQxNWlCtsfOPyHOnPbxzteXpC1psMMfSQp3ZEuangleIICirm4FUJoY8IQsNKOfg7ANw75ayFagQwQJhRQIknGlZdsTYMakkaSJPCDWZbDg6j3gI8isEzSixHqLCuDKF4lVyDZb3JwVfw0fitdvs-lgG4bvt8AZ_06vEyM1dViuAy4aPhvZLQ_uDfvepvDr9S6Mrsum1On73vvdwRrawuNife04q82kmL8j6TGSX-UD7AhxG0l4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Photocatalytic+Activity+of+Surface%E2%80%90Modified+TiO2+with+Bimetallic+AuPd+Nanoalloys+for+Hydrogen+Generation&rft.jtitle=Solar+RRL&rft.au=M%C3%A9ndez%E2%80%90Medrano%2C+Ana+Andrea&rft.au=Bahena%E2%80%90Uribe%2C+Daniel&rft.au=Dragoe%2C+Diana&rft.au=Clavagu%C3%A9ra%2C+Carine&rft.date=2024-07-01&rft.issn=2367-198X&rft.eissn=2367-198X&rft.volume=8&rft.issue=13&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsolr.202400106&rft.externalDBID=10.1002%252Fsolr.202400106&rft.externalDocID=SOLR202400106 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2367-198X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2367-198X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2367-198X&client=summon |