Identification and Heterologous Production of a Lipase from Geobacillus kaustophilus DSM 7263.sup.T and Tailoring Its N-Terminal by a His-Tag Epitope
Lipases are versatile biocatalysts with many biotechnological applications and the necessity of screening, production and characterization of new lipases from diverse microbial strains to meet industrial needs is constantly emerging. In this study, the lipase gene (gklip) from a thermophilic bacteri...
Saved in:
Published in: | The protein journal Vol. 40; no. 3; p. 436 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Springer
01-06-2021
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Lipases are versatile biocatalysts with many biotechnological applications and the necessity of screening, production and characterization of new lipases from diverse microbial strains to meet industrial needs is constantly emerging. In this study, the lipase gene (gklip) from a thermophilic bacterium, Geobacillus kaustophilus DSM 7263.sup. T was cloned into the pET28a ( +) vector with N-terminal 6xHis-tag. The recombinant gklip gene was heterologously expressed in host E. coli BL21 (DE3) cells and purified by Ni-NTA affinity chromatography. Histidine tag was removed from the purified 6xHistag-Gklip enzyme with thrombin enzyme and the molecular mass was determined to be approximately 43 kDa by SDS-PAGE. Gklip showed optimal activity at pH 8.0 and 50 °C. The specific hydrolytic activities against substrates were significantly increased by the removal of the His-tag. K.sub.m and k.sub.cat values of Gklip against p-nitrophenyl palmitate (pNPP, 4-nitrophenyl palmitate) as the target substrate were found to be as 1.22 mM and 417.1 min.sup.-1, respectively. Removing His-tag changed the substrate preference of the enzyme leading to maximum lipolytic activity towards C10 and C12 lipids. Similarly, the activity against coconut oil that containing 62% medium-chain fatty acids was significantly higher than other oils. Furthermore, preservation of activity in the presence of inhibitors, organic solvents support the effect of lid structure of the enzyme. |
---|---|
ISSN: | 1572-3887 |
DOI: | 10.1007/s10930-021-09987-4 |