Antinociceptive Action of Moringa peregrina is Mediated by an Interaction with [[alpha].sub.2]-Adrenergic Receptor

Background: Moringa peregrina (M. peregrina) is an edible, drought-resistant tree that is native to semi-arid countries. It is used as a painkiller in folk medicine. Aims: To study the antinociceptive effects of the leaf extract of M. peregrina in mice. Study Design: Animal experimentation. Methods:...

Full description

Saved in:
Bibliographic Details
Published in:Balkan medical journal Vol. 37; no. 4; p. 189
Main Authors: Jaffal, Sahar M, Al-Najjar, Belal O, Abbas, Manal A, Oran, Sawsan A
Format: Journal Article
Language:English
Published: Galenos Yayinevi Tic. Ltd 01-08-2020
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background: Moringa peregrina (M. peregrina) is an edible, drought-resistant tree that is native to semi-arid countries. It is used as a painkiller in folk medicine. Aims: To study the antinociceptive effects of the leaf extract of M. peregrina in mice. Study Design: Animal experimentation. Methods: We employed thermal (hot plate and tail-immersion tests) and chemical (writhing and formalin tests) pain models in male BALB/c mice (eight animals per group) to investigate the mechanisms involved in the antinociceptive actions of M. peregrina. Additionally, we identified the chemical constituents present in the extract of M. peregrina by using liquid chromatography-mass spectrometry analysis, and predicted the possible active constituents that interact with the receptor based on molecular docking simulations. Results: In the writhing test, 200 mg/kg of M. peregrina extract restricted abdominal cramps by up to 55.97% (p<0.001). Further, it reduced the time of paw-licking in the early and late phases of formalin test by up to 56.8% and 65.5%, respectively, as compared to the percentage inhibitions of 50.5% and 48.4% produced by 30 mg/kg diclofenac sodium in the early and late phases, respectively (p<0.05). This effect was abrogated by yohimbine (1 mg/kg, intraperitoneally), but not by methysergide (5 mg/kg, intraperitoneally), in the late phase only, which indicates that the action of M. peregrina in formalin test is not mediated by 5-HT2 serotonin receptors, but rather via [[alpha].sub.2]adrenergic receptors. In the hot plate test, but not on tail-immersion test, the high dose (400 mg/kg) of the extract increased the latency time after 30 minutes of its administration. Yohimbine antagonized the action of M. peregrina in the hot plate test. Based on LC-MS analysis, the major constituents found in M. peregrina methanolic extract were chrysoeriol 7-O-diglucoside, lupeol acetate, quercetin, and rutin. Depending on the molecular docking results, the activity of M. peregrina extract could be due to the binding of chrysoeriol 7-O-diglucoside, quercetin, and rutin to the [[alpha].sub.2]-adrenergic receptor. Conclusion: Interaction with the [[alpha].sub.2]-adrenergic receptor serves as a possible mechanism of the M. peregrina analgesic effect. Keywords: Adrenergic alpha-2 receptor antagonists, analgesics, molecular docking, Moringa peregrina
ISSN:2146-3123
DOI:10.4274/balkanmedj.galenos.2020.2019.11.14