Rational Design of a Hierarchical Tin Dendrite Electrode for Efficient Electrochemical Reduction of CO2
Catalysis is a key technology for the synthesis of renewable fuels through electrochemical reduction of CO2. However, successful CO2 reduction still suffers from the lack of affordable catalyst design and understanding the factors governing catalysis. Herein, we demonstrate that the CO2 conversion s...
Saved in:
Published in: | ChemSusChem Vol. 8; no. 18; pp. 3092 - 3098 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Weinheim
WILEY-VCH Verlag
21-09-2015
WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Catalysis is a key technology for the synthesis of renewable fuels through electrochemical reduction of CO2. However, successful CO2 reduction still suffers from the lack of affordable catalyst design and understanding the factors governing catalysis. Herein, we demonstrate that the CO2 conversion selectivity on Sn (or SnOx/Sn) electrodes is correlated to the native oxygen content at the subsurface. Electrochemical analyses show that the reduced Sn electrode with abundant oxygen species effectively stabilizes a CO2.− intermediate rather than the clean Sn surface, and consequently results in enhanced formate production in the CO2 reduction. Based on this design strategy, a hierarchical Sn dendrite electrode with high oxygen content, consisting of a multi‐branched conifer‐like structure with an enlarged surface area, was synthesized. The electrode exhibits a superior formate production rate (228.6 μmol h−1 cm−2) at −1.36 VRHE without any considerable catalytic degradation over 18 h of operation.
Not exactly what it says on the tin: Rational design principles for tin electrodes to be used in selective CO2 reduction to formate are suggested using hierarchical tin dendrite electrodes (multi‐branched conifer‐like structure) that show remarkable activity and stability. The initial oxygen content of the tin electrode is set as “selectivity descriptor” and the architecture is manipulated to maximize the number of active sites. |
---|---|
AbstractList | Catalysis is a key technology for the synthesis of renewable fuels through electrochemical reduction of CO2 . However, successful CO2 reduction still suffers from the lack of affordable catalyst design and understanding the factors governing catalysis. Herein, we demonstrate that the CO2 conversion selectivity on Sn (or SnOx /Sn) electrodes is correlated to the native oxygen content at the subsurface. Electrochemical analyses show that the reduced Sn electrode with abundant oxygen species effectively stabilizes a CO2 (.-) intermediate rather than the clean Sn surface, and consequently results in enhanced formate production in the CO2 reduction. Based on this design strategy, a hierarchical Sn dendrite electrode with high oxygen content, consisting of a multi-branched conifer-like structure with an enlarged surface area, was synthesized. The electrode exhibits a superior formate production rate (228.6 μmol h(-1) cm(-2) ) at -1.36 VRHE without any considerable catalytic degradation over 18 h of operation. Catalysis is a key technology for the synthesis of renewable fuels through electrochemical reduction of CO2. However, successful CO2 reduction still suffers from the lack of affordable catalyst design and understanding the factors governing catalysis. Herein, we demonstrate that the CO2 conversion selectivity on Sn (or SnOx/Sn) electrodes is correlated to the native oxygen content at the subsurface. Electrochemical analyses show that the reduced Sn electrode with abundant oxygen species effectively stabilizes a CO2.- intermediate rather than the clean Sn surface, and consequently results in enhanced formate production in the CO2 reduction. Based on this design strategy, a hierarchical Sn dendrite electrode with high oxygen content, consisting of a multi-branched conifer-like structure with an enlarged surface area, was synthesized. The electrode exhibits a superior formate production rate (228.6µmolh-1cm-2) at -1.36VRHE without any considerable catalytic degradation over 18h of operation. Catalysis is a key technology for the synthesis of renewable fuels through electrochemical reduction of CO2. However, successful CO2 reduction still suffers from the lack of affordable catalyst design and understanding the factors governing catalysis. Herein, we demonstrate that the CO2 conversion selectivity on Sn (or SnOx/Sn) electrodes is correlated to the native oxygen content at the subsurface. Electrochemical analyses show that the reduced Sn electrode with abundant oxygen species effectively stabilizes a CO2.− intermediate rather than the clean Sn surface, and consequently results in enhanced formate production in the CO2 reduction. Based on this design strategy, a hierarchical Sn dendrite electrode with high oxygen content, consisting of a multi‐branched conifer‐like structure with an enlarged surface area, was synthesized. The electrode exhibits a superior formate production rate (228.6 μmol h−1 cm−2) at −1.36 VRHE without any considerable catalytic degradation over 18 h of operation. Not exactly what it says on the tin: Rational design principles for tin electrodes to be used in selective CO2 reduction to formate are suggested using hierarchical tin dendrite electrodes (multi‐branched conifer‐like structure) that show remarkable activity and stability. The initial oxygen content of the tin electrode is set as “selectivity descriptor” and the architecture is manipulated to maximize the number of active sites. |
Author | Won, Da Hye Kim, Eun-Hee Chung, Jaehoon Woo, Seong Ihl Choi, Chang Hyuck Chung, Min Wook |
Author_xml | – sequence: 1 givenname: Da Hye surname: Won fullname: Won, Da Hye organization: Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Republic of Korea) – sequence: 2 givenname: Chang Hyuck surname: Choi fullname: Choi, Chang Hyuck organization: Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Republic of Korea) – sequence: 3 givenname: Jaehoon surname: Chung fullname: Chung, Jaehoon organization: Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Republic of Korea) – sequence: 4 givenname: Min Wook surname: Chung fullname: Chung, Min Wook organization: Graduate School of EEWS (BK21PLUS), Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Republic of Korea) – sequence: 5 givenname: Eun-Hee surname: Kim fullname: Kim, Eun-Hee organization: Protein Structure Research Team, Korea Basic Science Institute, Cheongjoo 363-663 (Republic of Korea) – sequence: 6 givenname: Seong Ihl surname: Woo fullname: Woo, Seong Ihl email: siwoo@kaist.ac.kr organization: Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Republic of Korea) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26219092$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkUtP3DAUhS1EBQxly7KKxKabTP2KEy-rdGAqBlAZKhAby3GuB0MmoXailn-Ph4EsuvLjfOdI954J2m27FhA6JnhKMKbfTAhmSjHJMBaS76ADUgieZoLf7Y53RvbRJITHiGApxB7ap4ISiSU9QKtr3buu1U3yA4JbtUlnE53MHXjtzYMzUbhxbRTb2rseklkDpvddDYntfDKz1hkHbf_xbx5g_Wa6hnowm-RNYHlFP6NPVjcBjt7PQ_T7dHZTztPF1dnP8vsiXXGGeSor4LksNIjKiCo3hFkhC2EzbQ2zdcWZKeqCgeASCKdEM12TSJKqoJqJnB2ir9vcZ9_9GSD0au2CgabRLXRDUCQnLKMFlyyiJ_-hj93g4yreKMoLnFEeqS_v1FCtoVbP3q21f1EfK4yA3AJ_XQMvo06w2hSkNgWpsSBVLpfl-IredOt1oYd_o1f7JxVnyTN1e3mmTpfnv27ni3t1wV4BxNeUsg |
ContentType | Journal Article |
Copyright | 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
DOI | 10.1002/cssc.201500694 |
DatabaseName | Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Materials Research Database |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1864-564X |
EndPage | 3098 |
ExternalDocumentID | 3807910551 26219092 CSSC201500694 ark_67375_WNG_FSKQWHLZ_M |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Korea South‐East Power Co. Ltd. – fundername: National Research Foundation (NRF) |
GroupedDBID | --- 05W 0R~ 1OC 29B 33P 4.4 5GY 5VS 66C 77Q 8-1 A00 AAESR AAHHS AAIHA AANLZ AASGY AAXRX AAZKR ABCUV ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB AZVAB BDRZF BFHJK BRXPI BSCLL CS3 DCZOG DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F5P G-S HGLYW HZ~ IX1 LATKE LAW LEEKS LITHE LOXES LUTES LW6 LYRES MEWTI MY~ O9- OIG P2W P4E PQQKQ ROL SUPJJ SV3 W99 WBKPD WOHZO WXSBR WYJ XV2 ZZTAW ~S- CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD AAMNL JG9 K9. 7X8 |
ID | FETCH-LOGICAL-g4304-9be4798ae6bc6b7c13f6986f5afc3fdb43c8d83e649e1421a3ad1c6b1b82a3673 |
IEDL.DBID | 33P |
ISSN | 1864-5631 |
IngestDate | Wed Jul 24 16:15:47 EDT 2024 Tue Nov 19 05:58:46 EST 2024 Sat Sep 28 08:02:00 EDT 2024 Sat Aug 24 00:50:22 EDT 2024 Wed Oct 30 09:49:03 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Keywords | tin carbon dioxide formate electrocatalysis oxygen content |
Language | English |
License | 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-g4304-9be4798ae6bc6b7c13f6986f5afc3fdb43c8d83e649e1421a3ad1c6b1b82a3673 |
Notes | National Research Foundation (NRF) istex:5C043AB81AF1B993533FFCDB6C69358002C0E532 ark:/67375/WNG-FSKQWHLZ-M ArticleID:CSSC201500694 Korea South-East Power Co. Ltd. These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 26219092 |
PQID | 1712480524 |
PQPubID | 986333 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1713528493 proquest_journals_1712480524 pubmed_primary_26219092 wiley_primary_10_1002_cssc_201500694_CSSC201500694 istex_primary_ark_67375_WNG_FSKQWHLZ_M |
PublicationCentury | 2000 |
PublicationDate | September 21, 2015 |
PublicationDateYYYYMMDD | 2015-09-21 |
PublicationDate_xml | – month: 09 year: 2015 text: September 21, 2015 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Germany |
PublicationTitle | ChemSusChem |
PublicationTitleAlternate | ChemSusChem |
PublicationYear | 2015 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag – name: Wiley Subscription Services, Inc |
References | Z. F. Chen, P. Kang, M. T. Zhang, B. R. Stoner, T. J. Meyer, Energy Environ. Sci. 2013, 6, 813-817 H.-Y. Kim, I. Choi, S. H. Ahn, S. J. Hwang, S. J. Yoo, J. Han, J. Kim, H. Park, J. H. Jang, S.-K. Kim, Int. J. Hydrogen Energy 2014, 39, 16506-16512 M. Azuma, K. Hashimoto, M. Hiramoto, M. Watanabe, T. Sakata, J. Electrochem. Soc. 1990, 137, 1772-1778 D. R. Kauffman, D. Alfonso, C. Matranga, H. Qian, R. Jin, J. Am. Chem. Soc. 2012, 134, 10237-10243 G. Centi, E. A. Quadrelli, S. Perathoner, Energy Environ. Sci. 2013, 6, 1711-1731 G. Centi, S. Perathoner, ChemSusChem 2010, 3, 195-208. A. Salehi-Khojin, H.-R. M. Jhong, B. A. Rosen, W. Zhu, S. Ma, P. J. A. Kenis, R. I. Masel, J. Phys. Chem. C 2013, 117, 1627-1632 D. R. Lide, in CRC Handbook of Chemistry and Physics, Internet Version 2005, CRC Press, Boca Raton, FL, 2005. N. Sreekanth, K. L. Phani, Chem. Commun. 2014, 50, 11143-11146 X. Feng, K. Jiang, S. Fan, M. W. Kanan, J. Am. Chem. Soc. 2015, 137, 4606-4609. D. H. Won, C. H. Choi, J. Chung, S. I. Woo, Appl. Catal. B 2014, 158-159, 217-223 Y. Chen, C. W. Li, M. W. Kanan, J. Am. Chem. Soc. 2012, 134, 19969-19972 W. Zhu, R. Michalsky, Ö. Metin, H. Lv, S. Guo, C. J. Wright, X. Sun, A. A. Peterson, S. Sun, J. Am. Chem. Soc. 2013, 135, 16833-16836 H. Mistry, R. Reske, Z. Zeng, Z.-J. Zhao, J. Greeley, P. Strasser, B. R. Cuenya, J. Am. Chem. Soc. 2014, 136, 16473-16476. G. A. Olah, G. K. S. Prakash, A. Goeppert, J. Am. Chem. Soc. 2011, 133, 12881-12898 C. H. Lee, M. W. Kanan, ACS Catal. 2015, 5, 465-469. Q. Wang, H. Dong, H. Yu, H. Yu, J. Power Sources 2015, 279, 1-5 C. Genovese, C. Ampelli, S. Perathoner, G. Centi, J. Catal. 2013, 308, 237-249 S. Sen, D. Liu, G. T. R. Palmore, ACS Catal. 2014, 4, 3091-3095 K. J. P. Schouten, Y. Kwon, C. J. M. van der Ham, Z. Qin, M. T. M. Koper, Chem. Sci. 2011, 2, 1902-1909 A. S. Agarwal, Y. Zhai, D. Hill, N. Sridhar, ChemSusChem 2011, 4, 1705-1705 R. Zhang, W. Lv, G. Li, L. Lei, Mater. Lett. 2015, 141, 63-66 J. Qiao, Y. Liu, F. Hong, J. Zhang, Chem. Soc. Rev. 2014, 43, 631-675 S. Zhang, P. Kang, T. J. Meyer, J. Am. Chem. Soc. 2014, 136, 1734-1737 W. Zhu, Y.-J. Zhang, H. Zhang, H. Lv, Q. Li, R. Michalsky, A. A. Peterson, S. Sun, J. Am. Chem. Soc. 2014, 136, 16132-16135 R. Reske, H. Mistry, F. Behafarid, B. Roldan Cuenya, P. Strasser, J. Am. Chem. Soc. 2014, 136, 6978-6986 J. Xiao, A. Kuc, T. Frauenheim, T. Heine, J. Mater. Chem. A 2014, 2, 4885-4889. K. P. Kuhl, E. R. Cave, D. N. Abram, T. F. Jaramillo, Energy Environ. Sci. 2012, 5, 7050-7059 T. Hatsukade, K. P. Kuhl, E. R. Cave, D. N. Abram, T. F. Jaramillo, Phys. Chem. Chem. Phys. 2014, 16, 13814-13819 Y. Chen, M. W. Kanan, J. Am. Chem. Soc. 2012, 134, 1986-1989 S. Lee, J. D. Ocon, Y.-i. Son, J. Lee, J. Phys. Chem. C 2015, 119, 4884-4890 M. R. Thorson, K. I. Siil, P. J. A. Kenis, J. Electrochem. Soc. 2013, 160, F69-F74 K. P. Kuhl, T. Hatsukade, E. R. Cave, D. N. Abram, J. Kibsgaard, T. F. Jaramillo, J. Am. Chem. Soc. 2014, 136, 14107-14113. M. Gattrell, N. Gupta, A. Co, J. Electroanal. Chem. 2006, 594, 1-19 J. Chastain, R. C. J. King, Handbook of X-ray Photoelectron Spectroscopy, 1992. Y. Hori, H. Wakebe, T. Tsukamoto, O. Koga, Electrochim. Acta 1994, 39, 1833-1839 D. Gao, H. Zhou, J. Wang, S. Miao, F. Yang, G. Wang, J. Wang, X. Bao, J. Am. Chem. Soc. 2015, 137, 4288-4291. C. W. Li, M. W. Kanan, J. Am. Chem. Soc. 2012, 134, 7231-7234 M. Watanabe, M. Shibata, A. Kato, M. Azuma, T. Sakata, J. Electrochem. Soc. 1991, 138, 3382-3389. E. V. Kondratenko, G. Mul, J. Baltrusaitis, G. O. Larrazabal, J. Perez-Ramirez, Energy Environ. Sci. 2013, 6, 3112-3135 M. F. Baruch, J. E. Pander, J. L. White, A. B. Bocarsly, ACS Catal. 2015, 5, 3148-3156 S. Perathoner, G. Centi, ChemSusChem 2014, 7, 1274-1282. R. Kortlever, K. H. Tan, Y. Kwon, M. T. M. Koper, J. Solid State Electrochem. 2013, 17, 1843-1849 W. Lv, R. Zhang, P. Gao, L. Lei, J. Power Sources 2014, 253, 276-281 S. Lee, H. Ju, R. Machunda, S. Uhm, J. K. Lee, H. J. Lee, J. Lee, J. Mater. Chem. A 2015, 3, 3029-3034. C. E. Tornow, M. R. Thorson, S. Ma, A. A. Gewirth, P. J. A. Kenis, J. Am. Chem. Soc. 2012, 134, 19520-19523 J. Wu, F. G. Risalvato, S. Ma, X.-D. Zhou, J. Mater. Chem. A 2014, 2, 1647-1651 J. Wu, F. G. Risalvato, F. S. Ke, P. J. Pellechia, X. D. Zhou, J. Electrochem. Soc. 2012, 159, F353-F359 2015; 141 2015; 5 2011; 2 2015; 3 2013; 308 2006; 594 2005 1992 2011; 4 2014; 253 1991; 138 2013; 6 2013; 160 2014; 136 2011; 133 2014; 43 2014; 4 2012; 134 2013; 17 1990; 137 2014; 2 2015; 137 2015; 279 2013; 117 2014; 16 2013; 135 2015; 119 1994; 39 2014; 39 2010; 3 2012; 159 2014; 7 2014; 50 2012; 5 2014; 158–159 |
References_xml | – volume: 134 start-page: 19969 year: 2012 end-page: 19972 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 3091 year: 2014 end-page: 3095 publication-title: ACS Catal. – volume: 5 start-page: 465 year: 2015 end-page: 469 publication-title: ACS Catal. – volume: 43 start-page: 631 year: 2014 end-page: 675 publication-title: Chem. Soc. Rev. – volume: 134 start-page: 7231 year: 2012 end-page: 7234 publication-title: J. Am. Chem. Soc. – year: 2005 – volume: 136 start-page: 6978 year: 2014 end-page: 6986 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 1274 year: 2014 end-page: 1282 publication-title: ChemSusChem – volume: 4 start-page: 1705 year: 2011 end-page: 1705 publication-title: ChemSusChem – volume: 2 start-page: 1647 year: 2014 end-page: 1651 publication-title: J. Mater. Chem. A – volume: 6 start-page: 813 year: 2013 end-page: 817 publication-title: Energy Environ. Sci. – volume: 137 start-page: 4606 year: 2015 end-page: 4609 publication-title: J. Am. Chem. Soc. – volume: 160 start-page: 69 year: 2013 end-page: 74 publication-title: J. Electrochem. Soc. – volume: 137 start-page: 4288 year: 2015 end-page: 4291 publication-title: J. Am. Chem. Soc. – volume: 137 start-page: 1772 year: 1990 end-page: 1778 publication-title: J. Electrochem. Soc. – volume: 136 start-page: 14107 year: 2014 end-page: 14113 publication-title: J. Am. Chem. Soc. – volume: 308 start-page: 237 year: 2013 end-page: 249 publication-title: J. Catal. – volume: 17 start-page: 1843 year: 2013 end-page: 1849 publication-title: J. Solid State Electrochem. – volume: 5 start-page: 3148 year: 2015 end-page: 3156 publication-title: ACS Catal. – volume: 135 start-page: 16833 year: 2013 end-page: 16836 publication-title: J. Am. Chem. Soc. – year: 1992 – volume: 136 start-page: 16473 year: 2014 end-page: 16476 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 4885 year: 2014 end-page: 4889 publication-title: J. Mater. Chem. A – volume: 50 start-page: 11143 year: 2014 end-page: 11146 publication-title: Chem. Commun. – volume: 158–159 start-page: 217 year: 2014 end-page: 223 publication-title: Appl. Catal. B – volume: 6 start-page: 3112 year: 2013 end-page: 3135 publication-title: Energy Environ. Sci. – volume: 136 start-page: 16132 year: 2014 end-page: 16135 publication-title: J. Am. Chem. Soc. – volume: 134 start-page: 10237 year: 2012 end-page: 10243 publication-title: J. Am. Chem. Soc. – volume: 594 start-page: 1 year: 2006 end-page: 19 publication-title: J. Electroanal. Chem. – volume: 141 start-page: 63 year: 2015 end-page: 66 publication-title: Mater. Lett. – volume: 119 start-page: 4884 year: 2015 end-page: 4890 publication-title: J. Phys. Chem. C – volume: 16 start-page: 13814 year: 2014 end-page: 13819 publication-title: Phys. Chem. Chem. Phys. – volume: 6 start-page: 1711 year: 2013 end-page: 1731 publication-title: Energy Environ. Sci. – volume: 138 start-page: 3382 year: 1991 end-page: 3389 publication-title: J. Electrochem. Soc. – volume: 253 start-page: 276 year: 2014 end-page: 281 publication-title: J. Power Sources – volume: 134 start-page: 1986 year: 2012 end-page: 1989 publication-title: J. Am. Chem. Soc. – volume: 134 start-page: 19520 year: 2012 end-page: 19523 publication-title: J. Am. Chem. Soc. – volume: 159 start-page: 353 year: 2012 end-page: 359 publication-title: J. Electrochem. Soc. – volume: 3 start-page: 195 year: 2010 end-page: 208 publication-title: ChemSusChem – volume: 136 start-page: 1734 year: 2014 end-page: 1737 publication-title: J. Am. Chem. Soc. – volume: 117 start-page: 1627 year: 2013 end-page: 1632 publication-title: J. Phys. Chem. C – volume: 133 start-page: 12881 year: 2011 end-page: 12898 publication-title: J. Am. Chem. Soc. – volume: 39 start-page: 1833 year: 1994 end-page: 1839 publication-title: Electrochim. Acta – volume: 3 start-page: 3029 year: 2015 end-page: 3034 publication-title: J. Mater. Chem. A – volume: 5 start-page: 7050 year: 2012 end-page: 7059 publication-title: Energy Environ. Sci. – volume: 2 start-page: 1902 year: 2011 end-page: 1909 publication-title: Chem. Sci. – volume: 39 start-page: 16506 year: 2014 end-page: 16512 publication-title: Int. J. Hydrogen Energy – volume: 279 start-page: 1 year: 2015 end-page: 5 publication-title: J. Power Sources |
SSID | ssj0060966 |
Score | 2.6054664 |
Snippet | Catalysis is a key technology for the synthesis of renewable fuels through electrochemical reduction of CO2. However, successful CO2 reduction still suffers... Catalysis is a key technology for the synthesis of renewable fuels through electrochemical reduction of CO2 . However, successful CO2 reduction still suffers... |
SourceID | proquest pubmed wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 3092 |
SubjectTerms | carbon dioxide Carbon Dioxide - chemistry Catalysis Drug Design electrocatalysis Electrochemistry - instrumentation Electrodes formate Formates - chemistry Oxidation-Reduction Oxygen - chemistry oxygen content tin Tin - chemistry |
Title | Rational Design of a Hierarchical Tin Dendrite Electrode for Efficient Electrochemical Reduction of CO2 |
URI | https://api.istex.fr/ark:/67375/WNG-FSKQWHLZ-M/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.201500694 https://www.ncbi.nlm.nih.gov/pubmed/26219092 https://www.proquest.com/docview/1712480524 https://search.proquest.com/docview/1713528493 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagF7hAyzPQIiMhblHjRxz7iNJdVgIKdIuKuFh27FQVKIs2rMTPZ8Z5VJU4wS2JPXbkscefH_MNIa-i9yVOS3lkJsICxVe5L1XIDRhLxpuS63RiulpXp1_1yQJpcmYv_oEfYt5ww5GR7DUOcOf742vS0KbvkYIQAA36boIRhqVC8uEQnyZTrACfJ_cirWReKsEm1saCH98UB2iKrfr7bzjzJmxN887y_v__8T65N2JO-mboJAfkVuwekDv1FOrtIbk8G7cE6Um60EE3LXV0dYXOySlWyg96ftVBYhe2AFHpYoidEyIFyEsXiYUCJq_pezOSENAz5IXFkrHA-iN_RL4sF-f1Kh8jMOSXUhQyNz7KymgXlW-UrxomWmW0akvXNqINXopGBy2ikiYyyZkTLjDIybzmTqhKPCZ73aaLTwmVgLtAmjcFAE6AWa4KIFQYXXodhFIZeZ00YH8OLBvWbb_jpbOqtBenb-1y_e7zxer9N_shI4eTiuw43nrLKsApGJ1BZuTlnAytiMcfroubXcqDVDbSiIw8GVQ7V8ahZ5rC8IzwpME5YWB15hZ1Z2fd2Xq9rue3Z_8i9JzcxWe8esLZIdn7td3FI3K7D7sXqQ__AXP17uc |
link.rule.ids | 315,782,786,1408,27935,27936,46066,46490 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZoOZQLb0qgBSMhblHjRxz7WKW7Dep2ge6iIi5WnDhVBcqiXVbi5zPjPKpKnFCPsT1O5PGMv9iebwh5751LcVmKPTMeflBcFrtU1bEBZ8l4lXIdTkyLRTb_pk8mSJNzPMTCdPwQ44YbWkbw12jguCF9dMMaWm02yEEIiAaDN3fIfamkwewNQnwenLEChB4CjLSScaoEG3gbE350Wx7AKY7rn38hzdvANaw800d38M2PycMedtLjbp48Ifd8-5Ts5UO2t2fk6qLfFaQn4U4HXTW0pMU1xieHdCk_6fK6hcq2XgNKpZMufU7tKaBeOglEFLB-DeVVz0NAL5AaFnvGDvNP_Dn5Op0s8yLukzDEV1IkMjbOy8zo0itXKZdVTDTKaNWkZVOJpnZSVLrWwsPYeyY5K0VZM2jJnOalUJl4QXbbVetfEioBeoE0rxLAnIC0yqwGocTo1OlaKBWRD0EF9ldHtGHL9Q-8d5al9nJ-aqeLsy-Xxey7PY_IwaAj25vcxrIMoAomaJAReTdWwyjiCUjZ-tU2tEE2G2lERPY73Y4v4zA5TWJ4RHhQ4VjRETtzi7qzo-5svljk49Or_xF6S_aK5fnMzj7Oz16TB1iON1E4OyC7v9dbf0h2NvX2TZjQfwGKTfMI |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIgGX8iwNFDAS4hY1fsSxjyi7y6KWpXSLirhYcexUFShb7bISPx-P80CVOMExtseJPGP7iz3zDcAbb22O21LqqfbhB8UWqc2lS3VYLCmrc6bijel8WSy-qskUaXLGKP6OH2I8cMOZEddrnODXrjn6QxpabzZIQRgADcZu7sBtgVgcgzj46bAWywDQY3yRkiLNJacDbWPGjm7KB2yKw_rrb0DzJm6NG8_s_v9_8gPY60EneddZyUO45dtHcLcccr09hsuz_kyQTKJHB1k1pCLzK4xOjslSfpDzqzZUtm4dMCqZdslznCcB85JppKEIu9dQXvcsBOQMiWGxZ-yw_MSewJfZ9Lycp30KhvRS8Eyk2npRaFV5aWtpi5ryRmolm7xqat44K3itnOJeCu2pYLTilaOhJbWKVVwWfB9221XrD4CIALyCNKuzgDgDzqoKF4QyrXKrHJcygbdRA-a6o9kw1fo7ep0VublYvDez5fHni_nJN_MxgcNBRaafcBtDiwBUMD2DSOD1WB1GEe8_qtavtrENctkIzRN42ql2fBkLpqkzzRJgUYNjRUfrzAzqzoy6M-VyWY5Pz_5F6BXcOZ3MzMmHxfFzuIfF6IbC6CHs_lxv_QvY2bjty2jOvwGtnfG3 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rational+Design+of+a+Hierarchical+Tin+Dendrite+Electrode+for+Efficient+Electrochemical+Reduction+of+CO2&rft.jtitle=ChemSusChem&rft.au=Won%2C+Da+Hye&rft.au=Choi%2C+Chang+Hyuck&rft.au=Chung%2C+Jaehoon&rft.au=Chung%2C+Min+Wook&rft.date=2015-09-21&rft.pub=WILEY%E2%80%90VCH+Verlag&rft.issn=1864-5631&rft.eissn=1864-564X&rft.volume=8&rft.issue=18&rft.spage=3092&rft.epage=3098&rft_id=info:doi/10.1002%2Fcssc.201500694&rft.externalDBID=10.1002%252Fcssc.201500694&rft.externalDocID=CSSC201500694 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon |