Rational Design of a Hierarchical Tin Dendrite Electrode for Efficient Electrochemical Reduction of CO2

Catalysis is a key technology for the synthesis of renewable fuels through electrochemical reduction of CO2. However, successful CO2 reduction still suffers from the lack of affordable catalyst design and understanding the factors governing catalysis. Herein, we demonstrate that the CO2 conversion s...

Full description

Saved in:
Bibliographic Details
Published in:ChemSusChem Vol. 8; no. 18; pp. 3092 - 3098
Main Authors: Won, Da Hye, Choi, Chang Hyuck, Chung, Jaehoon, Chung, Min Wook, Kim, Eun-Hee, Woo, Seong Ihl
Format: Journal Article
Language:English
Published: Weinheim WILEY-VCH Verlag 21-09-2015
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Catalysis is a key technology for the synthesis of renewable fuels through electrochemical reduction of CO2. However, successful CO2 reduction still suffers from the lack of affordable catalyst design and understanding the factors governing catalysis. Herein, we demonstrate that the CO2 conversion selectivity on Sn (or SnOx/Sn) electrodes is correlated to the native oxygen content at the subsurface. Electrochemical analyses show that the reduced Sn electrode with abundant oxygen species effectively stabilizes a CO2.− intermediate rather than the clean Sn surface, and consequently results in enhanced formate production in the CO2 reduction. Based on this design strategy, a hierarchical Sn dendrite electrode with high oxygen content, consisting of a multi‐branched conifer‐like structure with an enlarged surface area, was synthesized. The electrode exhibits a superior formate production rate (228.6 μmol h−1 cm−2) at −1.36 VRHE without any considerable catalytic degradation over 18 h of operation. Not exactly what it says on the tin: Rational design principles for tin electrodes to be used in selective CO2 reduction to formate are suggested using hierarchical tin dendrite electrodes (multi‐branched conifer‐like structure) that show remarkable activity and stability. The initial oxygen content of the tin electrode is set as “selectivity descriptor” and the architecture is manipulated to maximize the number of active sites.
AbstractList Catalysis is a key technology for the synthesis of renewable fuels through electrochemical reduction of CO2 . However, successful CO2 reduction still suffers from the lack of affordable catalyst design and understanding the factors governing catalysis. Herein, we demonstrate that the CO2 conversion selectivity on Sn (or SnOx /Sn) electrodes is correlated to the native oxygen content at the subsurface. Electrochemical analyses show that the reduced Sn electrode with abundant oxygen species effectively stabilizes a CO2 (.-) intermediate rather than the clean Sn surface, and consequently results in enhanced formate production in the CO2 reduction. Based on this design strategy, a hierarchical Sn dendrite electrode with high oxygen content, consisting of a multi-branched conifer-like structure with an enlarged surface area, was synthesized. The electrode exhibits a superior formate production rate (228.6 μmol h(-1)  cm(-2) ) at -1.36 VRHE without any considerable catalytic degradation over 18 h of operation.
Catalysis is a key technology for the synthesis of renewable fuels through electrochemical reduction of CO2. However, successful CO2 reduction still suffers from the lack of affordable catalyst design and understanding the factors governing catalysis. Herein, we demonstrate that the CO2 conversion selectivity on Sn (or SnOx/Sn) electrodes is correlated to the native oxygen content at the subsurface. Electrochemical analyses show that the reduced Sn electrode with abundant oxygen species effectively stabilizes a CO2.- intermediate rather than the clean Sn surface, and consequently results in enhanced formate production in the CO2 reduction. Based on this design strategy, a hierarchical Sn dendrite electrode with high oxygen content, consisting of a multi-branched conifer-like structure with an enlarged surface area, was synthesized. The electrode exhibits a superior formate production rate (228.6µmolh-1cm-2) at -1.36VRHE without any considerable catalytic degradation over 18h of operation.
Catalysis is a key technology for the synthesis of renewable fuels through electrochemical reduction of CO2. However, successful CO2 reduction still suffers from the lack of affordable catalyst design and understanding the factors governing catalysis. Herein, we demonstrate that the CO2 conversion selectivity on Sn (or SnOx/Sn) electrodes is correlated to the native oxygen content at the subsurface. Electrochemical analyses show that the reduced Sn electrode with abundant oxygen species effectively stabilizes a CO2.− intermediate rather than the clean Sn surface, and consequently results in enhanced formate production in the CO2 reduction. Based on this design strategy, a hierarchical Sn dendrite electrode with high oxygen content, consisting of a multi‐branched conifer‐like structure with an enlarged surface area, was synthesized. The electrode exhibits a superior formate production rate (228.6 μmol h−1 cm−2) at −1.36 VRHE without any considerable catalytic degradation over 18 h of operation. Not exactly what it says on the tin: Rational design principles for tin electrodes to be used in selective CO2 reduction to formate are suggested using hierarchical tin dendrite electrodes (multi‐branched conifer‐like structure) that show remarkable activity and stability. The initial oxygen content of the tin electrode is set as “selectivity descriptor” and the architecture is manipulated to maximize the number of active sites.
Author Won, Da Hye
Kim, Eun-Hee
Chung, Jaehoon
Woo, Seong Ihl
Choi, Chang Hyuck
Chung, Min Wook
Author_xml – sequence: 1
  givenname: Da Hye
  surname: Won
  fullname: Won, Da Hye
  organization: Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Republic of Korea)
– sequence: 2
  givenname: Chang Hyuck
  surname: Choi
  fullname: Choi, Chang Hyuck
  organization: Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Republic of Korea)
– sequence: 3
  givenname: Jaehoon
  surname: Chung
  fullname: Chung, Jaehoon
  organization: Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Republic of Korea)
– sequence: 4
  givenname: Min Wook
  surname: Chung
  fullname: Chung, Min Wook
  organization: Graduate School of EEWS (BK21PLUS), Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Republic of Korea)
– sequence: 5
  givenname: Eun-Hee
  surname: Kim
  fullname: Kim, Eun-Hee
  organization: Protein Structure Research Team, Korea Basic Science Institute, Cheongjoo 363-663 (Republic of Korea)
– sequence: 6
  givenname: Seong Ihl
  surname: Woo
  fullname: Woo, Seong Ihl
  email: siwoo@kaist.ac.kr
  organization: Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Republic of Korea)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26219092$$D View this record in MEDLINE/PubMed
BookMark eNpdkUtP3DAUhS1EBQxly7KKxKabTP2KEy-rdGAqBlAZKhAby3GuB0MmoXailn-Ph4EsuvLjfOdI954J2m27FhA6JnhKMKbfTAhmSjHJMBaS76ADUgieZoLf7Y53RvbRJITHiGApxB7ap4ISiSU9QKtr3buu1U3yA4JbtUlnE53MHXjtzYMzUbhxbRTb2rseklkDpvddDYntfDKz1hkHbf_xbx5g_Wa6hnowm-RNYHlFP6NPVjcBjt7PQ_T7dHZTztPF1dnP8vsiXXGGeSor4LksNIjKiCo3hFkhC2EzbQ2zdcWZKeqCgeASCKdEM12TSJKqoJqJnB2ir9vcZ9_9GSD0au2CgabRLXRDUCQnLKMFlyyiJ_-hj93g4yreKMoLnFEeqS_v1FCtoVbP3q21f1EfK4yA3AJ_XQMvo06w2hSkNgWpsSBVLpfl-IredOt1oYd_o1f7JxVnyTN1e3mmTpfnv27ni3t1wV4BxNeUsg
ContentType Journal Article
Copyright 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/cssc.201500694
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Materials Research Database

Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1864-564X
EndPage 3098
ExternalDocumentID 3807910551
26219092
CSSC201500694
ark_67375_WNG_FSKQWHLZ_M
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Korea South‐East Power Co. Ltd.
– fundername: National Research Foundation (NRF)
GroupedDBID ---
05W
0R~
1OC
29B
33P
4.4
5GY
5VS
66C
77Q
8-1
A00
AAESR
AAHHS
AAIHA
AANLZ
AASGY
AAXRX
AAZKR
ABCUV
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
AZVAB
BDRZF
BFHJK
BRXPI
BSCLL
CS3
DCZOG
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
G-S
HGLYW
HZ~
IX1
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MY~
O9-
OIG
P2W
P4E
PQQKQ
ROL
SUPJJ
SV3
W99
WBKPD
WOHZO
WXSBR
WYJ
XV2
ZZTAW
~S-
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
AAMNL
JG9
K9.
7X8
ID FETCH-LOGICAL-g4304-9be4798ae6bc6b7c13f6986f5afc3fdb43c8d83e649e1421a3ad1c6b1b82a3673
IEDL.DBID 33P
ISSN 1864-5631
IngestDate Wed Jul 24 16:15:47 EDT 2024
Tue Nov 19 05:58:46 EST 2024
Sat Sep 28 08:02:00 EDT 2024
Sat Aug 24 00:50:22 EDT 2024
Wed Oct 30 09:49:03 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords tin
carbon dioxide
formate
electrocatalysis
oxygen content
Language English
License 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-g4304-9be4798ae6bc6b7c13f6986f5afc3fdb43c8d83e649e1421a3ad1c6b1b82a3673
Notes National Research Foundation (NRF)
istex:5C043AB81AF1B993533FFCDB6C69358002C0E532
ark:/67375/WNG-FSKQWHLZ-M
ArticleID:CSSC201500694
Korea South-East Power Co. Ltd.
These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 26219092
PQID 1712480524
PQPubID 986333
PageCount 7
ParticipantIDs proquest_miscellaneous_1713528493
proquest_journals_1712480524
pubmed_primary_26219092
wiley_primary_10_1002_cssc_201500694_CSSC201500694
istex_primary_ark_67375_WNG_FSKQWHLZ_M
PublicationCentury 2000
PublicationDate September 21, 2015
PublicationDateYYYYMMDD 2015-09-21
PublicationDate_xml – month: 09
  year: 2015
  text: September 21, 2015
  day: 21
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationTitle ChemSusChem
PublicationTitleAlternate ChemSusChem
PublicationYear 2015
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
– name: Wiley Subscription Services, Inc
References Z. F. Chen, P. Kang, M. T. Zhang, B. R. Stoner, T. J. Meyer, Energy Environ. Sci. 2013, 6, 813-817
H.-Y. Kim, I. Choi, S. H. Ahn, S. J. Hwang, S. J. Yoo, J. Han, J. Kim, H. Park, J. H. Jang, S.-K. Kim, Int. J. Hydrogen Energy 2014, 39, 16506-16512
M. Azuma, K. Hashimoto, M. Hiramoto, M. Watanabe, T. Sakata, J. Electrochem. Soc. 1990, 137, 1772-1778
D. R. Kauffman, D. Alfonso, C. Matranga, H. Qian, R. Jin, J. Am. Chem. Soc. 2012, 134, 10237-10243
G. Centi, E. A. Quadrelli, S. Perathoner, Energy Environ. Sci. 2013, 6, 1711-1731
G. Centi, S. Perathoner, ChemSusChem 2010, 3, 195-208.
A. Salehi-Khojin, H.-R. M. Jhong, B. A. Rosen, W. Zhu, S. Ma, P. J. A. Kenis, R. I. Masel, J. Phys. Chem. C 2013, 117, 1627-1632
D. R. Lide, in CRC Handbook of Chemistry and Physics, Internet Version 2005, CRC Press, Boca Raton, FL, 2005.
N. Sreekanth, K. L. Phani, Chem. Commun. 2014, 50, 11143-11146
X. Feng, K. Jiang, S. Fan, M. W. Kanan, J. Am. Chem. Soc. 2015, 137, 4606-4609.
D. H. Won, C. H. Choi, J. Chung, S. I. Woo, Appl. Catal. B 2014, 158-159, 217-223
Y. Chen, C. W. Li, M. W. Kanan, J. Am. Chem. Soc. 2012, 134, 19969-19972
W. Zhu, R. Michalsky, Ö. Metin, H. Lv, S. Guo, C. J. Wright, X. Sun, A. A. Peterson, S. Sun, J. Am. Chem. Soc. 2013, 135, 16833-16836
H. Mistry, R. Reske, Z. Zeng, Z.-J. Zhao, J. Greeley, P. Strasser, B. R. Cuenya, J. Am. Chem. Soc. 2014, 136, 16473-16476.
G. A. Olah, G. K. S. Prakash, A. Goeppert, J. Am. Chem. Soc. 2011, 133, 12881-12898
C. H. Lee, M. W. Kanan, ACS Catal. 2015, 5, 465-469.
Q. Wang, H. Dong, H. Yu, H. Yu, J. Power Sources 2015, 279, 1-5
C. Genovese, C. Ampelli, S. Perathoner, G. Centi, J. Catal. 2013, 308, 237-249
S. Sen, D. Liu, G. T. R. Palmore, ACS Catal. 2014, 4, 3091-3095
K. J. P. Schouten, Y. Kwon, C. J. M. van der Ham, Z. Qin, M. T. M. Koper, Chem. Sci. 2011, 2, 1902-1909
A. S. Agarwal, Y. Zhai, D. Hill, N. Sridhar, ChemSusChem 2011, 4, 1705-1705
R. Zhang, W. Lv, G. Li, L. Lei, Mater. Lett. 2015, 141, 63-66
J. Qiao, Y. Liu, F. Hong, J. Zhang, Chem. Soc. Rev. 2014, 43, 631-675
S. Zhang, P. Kang, T. J. Meyer, J. Am. Chem. Soc. 2014, 136, 1734-1737
W. Zhu, Y.-J. Zhang, H. Zhang, H. Lv, Q. Li, R. Michalsky, A. A. Peterson, S. Sun, J. Am. Chem. Soc. 2014, 136, 16132-16135
R. Reske, H. Mistry, F. Behafarid, B. Roldan Cuenya, P. Strasser, J. Am. Chem. Soc. 2014, 136, 6978-6986
J. Xiao, A. Kuc, T. Frauenheim, T. Heine, J. Mater. Chem. A 2014, 2, 4885-4889.
K. P. Kuhl, E. R. Cave, D. N. Abram, T. F. Jaramillo, Energy Environ. Sci. 2012, 5, 7050-7059
T. Hatsukade, K. P. Kuhl, E. R. Cave, D. N. Abram, T. F. Jaramillo, Phys. Chem. Chem. Phys. 2014, 16, 13814-13819
Y. Chen, M. W. Kanan, J. Am. Chem. Soc. 2012, 134, 1986-1989
S. Lee, J. D. Ocon, Y.-i. Son, J. Lee, J. Phys. Chem. C 2015, 119, 4884-4890
M. R. Thorson, K. I. Siil, P. J. A. Kenis, J. Electrochem. Soc. 2013, 160, F69-F74
K. P. Kuhl, T. Hatsukade, E. R. Cave, D. N. Abram, J. Kibsgaard, T. F. Jaramillo, J. Am. Chem. Soc. 2014, 136, 14107-14113.
M. Gattrell, N. Gupta, A. Co, J. Electroanal. Chem. 2006, 594, 1-19
J. Chastain, R. C. J. King, Handbook of X-ray Photoelectron Spectroscopy, 1992.
Y. Hori, H. Wakebe, T. Tsukamoto, O. Koga, Electrochim. Acta 1994, 39, 1833-1839
D. Gao, H. Zhou, J. Wang, S. Miao, F. Yang, G. Wang, J. Wang, X. Bao, J. Am. Chem. Soc. 2015, 137, 4288-4291.
C. W. Li, M. W. Kanan, J. Am. Chem. Soc. 2012, 134, 7231-7234
M. Watanabe, M. Shibata, A. Kato, M. Azuma, T. Sakata, J. Electrochem. Soc. 1991, 138, 3382-3389.
E. V. Kondratenko, G. Mul, J. Baltrusaitis, G. O. Larrazabal, J. Perez-Ramirez, Energy Environ. Sci. 2013, 6, 3112-3135
M. F. Baruch, J. E. Pander, J. L. White, A. B. Bocarsly, ACS Catal. 2015, 5, 3148-3156
S. Perathoner, G. Centi, ChemSusChem 2014, 7, 1274-1282.
R. Kortlever, K. H. Tan, Y. Kwon, M. T. M. Koper, J. Solid State Electrochem. 2013, 17, 1843-1849
W. Lv, R. Zhang, P. Gao, L. Lei, J. Power Sources 2014, 253, 276-281
S. Lee, H. Ju, R. Machunda, S. Uhm, J. K. Lee, H. J. Lee, J. Lee, J. Mater. Chem. A 2015, 3, 3029-3034.
C. E. Tornow, M. R. Thorson, S. Ma, A. A. Gewirth, P. J. A. Kenis, J. Am. Chem. Soc. 2012, 134, 19520-19523
J. Wu, F. G. Risalvato, S. Ma, X.-D. Zhou, J. Mater. Chem. A 2014, 2, 1647-1651
J. Wu, F. G. Risalvato, F. S. Ke, P. J. Pellechia, X. D. Zhou, J. Electrochem. Soc. 2012, 159, F353-F359
2015; 141
2015; 5
2011; 2
2015; 3
2013; 308
2006; 594
2005
1992
2011; 4
2014; 253
1991; 138
2013; 6
2013; 160
2014; 136
2011; 133
2014; 43
2014; 4
2012; 134
2013; 17
1990; 137
2014; 2
2015; 137
2015; 279
2013; 117
2014; 16
2013; 135
2015; 119
1994; 39
2014; 39
2010; 3
2012; 159
2014; 7
2014; 50
2012; 5
2014; 158–159
References_xml – volume: 134
  start-page: 19969
  year: 2012
  end-page: 19972
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 3091
  year: 2014
  end-page: 3095
  publication-title: ACS Catal.
– volume: 5
  start-page: 465
  year: 2015
  end-page: 469
  publication-title: ACS Catal.
– volume: 43
  start-page: 631
  year: 2014
  end-page: 675
  publication-title: Chem. Soc. Rev.
– volume: 134
  start-page: 7231
  year: 2012
  end-page: 7234
  publication-title: J. Am. Chem. Soc.
– year: 2005
– volume: 136
  start-page: 6978
  year: 2014
  end-page: 6986
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 1274
  year: 2014
  end-page: 1282
  publication-title: ChemSusChem
– volume: 4
  start-page: 1705
  year: 2011
  end-page: 1705
  publication-title: ChemSusChem
– volume: 2
  start-page: 1647
  year: 2014
  end-page: 1651
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 813
  year: 2013
  end-page: 817
  publication-title: Energy Environ. Sci.
– volume: 137
  start-page: 4606
  year: 2015
  end-page: 4609
  publication-title: J. Am. Chem. Soc.
– volume: 160
  start-page: 69
  year: 2013
  end-page: 74
  publication-title: J. Electrochem. Soc.
– volume: 137
  start-page: 4288
  year: 2015
  end-page: 4291
  publication-title: J. Am. Chem. Soc.
– volume: 137
  start-page: 1772
  year: 1990
  end-page: 1778
  publication-title: J. Electrochem. Soc.
– volume: 136
  start-page: 14107
  year: 2014
  end-page: 14113
  publication-title: J. Am. Chem. Soc.
– volume: 308
  start-page: 237
  year: 2013
  end-page: 249
  publication-title: J. Catal.
– volume: 17
  start-page: 1843
  year: 2013
  end-page: 1849
  publication-title: J. Solid State Electrochem.
– volume: 5
  start-page: 3148
  year: 2015
  end-page: 3156
  publication-title: ACS Catal.
– volume: 135
  start-page: 16833
  year: 2013
  end-page: 16836
  publication-title: J. Am. Chem. Soc.
– year: 1992
– volume: 136
  start-page: 16473
  year: 2014
  end-page: 16476
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 4885
  year: 2014
  end-page: 4889
  publication-title: J. Mater. Chem. A
– volume: 50
  start-page: 11143
  year: 2014
  end-page: 11146
  publication-title: Chem. Commun.
– volume: 158–159
  start-page: 217
  year: 2014
  end-page: 223
  publication-title: Appl. Catal. B
– volume: 6
  start-page: 3112
  year: 2013
  end-page: 3135
  publication-title: Energy Environ. Sci.
– volume: 136
  start-page: 16132
  year: 2014
  end-page: 16135
  publication-title: J. Am. Chem. Soc.
– volume: 134
  start-page: 10237
  year: 2012
  end-page: 10243
  publication-title: J. Am. Chem. Soc.
– volume: 594
  start-page: 1
  year: 2006
  end-page: 19
  publication-title: J. Electroanal. Chem.
– volume: 141
  start-page: 63
  year: 2015
  end-page: 66
  publication-title: Mater. Lett.
– volume: 119
  start-page: 4884
  year: 2015
  end-page: 4890
  publication-title: J. Phys. Chem. C
– volume: 16
  start-page: 13814
  year: 2014
  end-page: 13819
  publication-title: Phys. Chem. Chem. Phys.
– volume: 6
  start-page: 1711
  year: 2013
  end-page: 1731
  publication-title: Energy Environ. Sci.
– volume: 138
  start-page: 3382
  year: 1991
  end-page: 3389
  publication-title: J. Electrochem. Soc.
– volume: 253
  start-page: 276
  year: 2014
  end-page: 281
  publication-title: J. Power Sources
– volume: 134
  start-page: 1986
  year: 2012
  end-page: 1989
  publication-title: J. Am. Chem. Soc.
– volume: 134
  start-page: 19520
  year: 2012
  end-page: 19523
  publication-title: J. Am. Chem. Soc.
– volume: 159
  start-page: 353
  year: 2012
  end-page: 359
  publication-title: J. Electrochem. Soc.
– volume: 3
  start-page: 195
  year: 2010
  end-page: 208
  publication-title: ChemSusChem
– volume: 136
  start-page: 1734
  year: 2014
  end-page: 1737
  publication-title: J. Am. Chem. Soc.
– volume: 117
  start-page: 1627
  year: 2013
  end-page: 1632
  publication-title: J. Phys. Chem. C
– volume: 133
  start-page: 12881
  year: 2011
  end-page: 12898
  publication-title: J. Am. Chem. Soc.
– volume: 39
  start-page: 1833
  year: 1994
  end-page: 1839
  publication-title: Electrochim. Acta
– volume: 3
  start-page: 3029
  year: 2015
  end-page: 3034
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 7050
  year: 2012
  end-page: 7059
  publication-title: Energy Environ. Sci.
– volume: 2
  start-page: 1902
  year: 2011
  end-page: 1909
  publication-title: Chem. Sci.
– volume: 39
  start-page: 16506
  year: 2014
  end-page: 16512
  publication-title: Int. J. Hydrogen Energy
– volume: 279
  start-page: 1
  year: 2015
  end-page: 5
  publication-title: J. Power Sources
SSID ssj0060966
Score 2.6054664
Snippet Catalysis is a key technology for the synthesis of renewable fuels through electrochemical reduction of CO2. However, successful CO2 reduction still suffers...
Catalysis is a key technology for the synthesis of renewable fuels through electrochemical reduction of CO2 . However, successful CO2 reduction still suffers...
SourceID proquest
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 3092
SubjectTerms carbon dioxide
Carbon Dioxide - chemistry
Catalysis
Drug Design
electrocatalysis
Electrochemistry - instrumentation
Electrodes
formate
Formates - chemistry
Oxidation-Reduction
Oxygen - chemistry
oxygen content
tin
Tin - chemistry
Title Rational Design of a Hierarchical Tin Dendrite Electrode for Efficient Electrochemical Reduction of CO2
URI https://api.istex.fr/ark:/67375/WNG-FSKQWHLZ-M/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.201500694
https://www.ncbi.nlm.nih.gov/pubmed/26219092
https://www.proquest.com/docview/1712480524
https://search.proquest.com/docview/1713528493
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagF7hAyzPQIiMhblHjRxz7iNJdVgIKdIuKuFh27FQVKIs2rMTPZ8Z5VJU4wS2JPXbkscefH_MNIa-i9yVOS3lkJsICxVe5L1XIDRhLxpuS63RiulpXp1_1yQJpcmYv_oEfYt5ww5GR7DUOcOf742vS0KbvkYIQAA36boIRhqVC8uEQnyZTrACfJ_cirWReKsEm1saCH98UB2iKrfr7bzjzJmxN887y_v__8T65N2JO-mboJAfkVuwekDv1FOrtIbk8G7cE6Um60EE3LXV0dYXOySlWyg96ftVBYhe2AFHpYoidEyIFyEsXiYUCJq_pezOSENAz5IXFkrHA-iN_RL4sF-f1Kh8jMOSXUhQyNz7KymgXlW-UrxomWmW0akvXNqINXopGBy2ikiYyyZkTLjDIybzmTqhKPCZ73aaLTwmVgLtAmjcFAE6AWa4KIFQYXXodhFIZeZ00YH8OLBvWbb_jpbOqtBenb-1y_e7zxer9N_shI4eTiuw43nrLKsApGJ1BZuTlnAytiMcfroubXcqDVDbSiIw8GVQ7V8ahZ5rC8IzwpME5YWB15hZ1Z2fd2Xq9rue3Z_8i9JzcxWe8esLZIdn7td3FI3K7D7sXqQ__AXP17uc
link.rule.ids 315,782,786,1408,27935,27936,46066,46490
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZoOZQLb0qgBSMhblHjRxz7WKW7Dep2ge6iIi5WnDhVBcqiXVbi5zPjPKpKnFCPsT1O5PGMv9iebwh5751LcVmKPTMeflBcFrtU1bEBZ8l4lXIdTkyLRTb_pk8mSJNzPMTCdPwQ44YbWkbw12jguCF9dMMaWm02yEEIiAaDN3fIfamkwewNQnwenLEChB4CjLSScaoEG3gbE350Wx7AKY7rn38hzdvANaw800d38M2PycMedtLjbp48Ifd8-5Ts5UO2t2fk6qLfFaQn4U4HXTW0pMU1xieHdCk_6fK6hcq2XgNKpZMufU7tKaBeOglEFLB-DeVVz0NAL5AaFnvGDvNP_Dn5Op0s8yLukzDEV1IkMjbOy8zo0itXKZdVTDTKaNWkZVOJpnZSVLrWwsPYeyY5K0VZM2jJnOalUJl4QXbbVetfEioBeoE0rxLAnIC0yqwGocTo1OlaKBWRD0EF9ldHtGHL9Q-8d5al9nJ-aqeLsy-Xxey7PY_IwaAj25vcxrIMoAomaJAReTdWwyjiCUjZ-tU2tEE2G2lERPY73Y4v4zA5TWJ4RHhQ4VjRETtzi7qzo-5svljk49Or_xF6S_aK5fnMzj7Oz16TB1iON1E4OyC7v9dbf0h2NvX2TZjQfwGKTfMI
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIgGX8iwNFDAS4hY1fsSxjyi7y6KWpXSLirhYcexUFShb7bISPx-P80CVOMExtseJPGP7iz3zDcAbb22O21LqqfbhB8UWqc2lS3VYLCmrc6bijel8WSy-qskUaXLGKP6OH2I8cMOZEddrnODXrjn6QxpabzZIQRgADcZu7sBtgVgcgzj46bAWywDQY3yRkiLNJacDbWPGjm7KB2yKw_rrb0DzJm6NG8_s_v9_8gPY60EneddZyUO45dtHcLcccr09hsuz_kyQTKJHB1k1pCLzK4xOjslSfpDzqzZUtm4dMCqZdslznCcB85JppKEIu9dQXvcsBOQMiWGxZ-yw_MSewJfZ9Lycp30KhvRS8Eyk2npRaFV5aWtpi5ryRmolm7xqat44K3itnOJeCu2pYLTilaOhJbWKVVwWfB9221XrD4CIALyCNKuzgDgDzqoKF4QyrXKrHJcygbdRA-a6o9kw1fo7ep0VublYvDez5fHni_nJN_MxgcNBRaafcBtDiwBUMD2DSOD1WB1GEe8_qtavtrENctkIzRN42ql2fBkLpqkzzRJgUYNjRUfrzAzqzoy6M-VyWY5Pz_5F6BXcOZ3MzMmHxfFzuIfF6IbC6CHs_lxv_QvY2bjty2jOvwGtnfG3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rational+Design+of+a+Hierarchical+Tin+Dendrite+Electrode+for+Efficient+Electrochemical+Reduction+of+CO2&rft.jtitle=ChemSusChem&rft.au=Won%2C+Da+Hye&rft.au=Choi%2C+Chang+Hyuck&rft.au=Chung%2C+Jaehoon&rft.au=Chung%2C+Min+Wook&rft.date=2015-09-21&rft.pub=WILEY%E2%80%90VCH+Verlag&rft.issn=1864-5631&rft.eissn=1864-564X&rft.volume=8&rft.issue=18&rft.spage=3092&rft.epage=3098&rft_id=info:doi/10.1002%2Fcssc.201500694&rft.externalDBID=10.1002%252Fcssc.201500694&rft.externalDocID=CSSC201500694
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon