Photocatalytic hydrogen production from glycerol-water mixture over Pt-N-TiO2 nanotube photocatalyst
SUMMARY The effects of several modifications on TiO2 P25 in producing hydrogen from glycerol–water mixture have been investigated. Prior to further modification, TiO2 underwent hydrothermal treatment at 130°C for several hours to obtain nanotube shape. TiO2 nanotubes (TiNT) was then doped with plati...
Saved in:
Published in: | International journal of energy research Vol. 37; no. 11; pp. 1372 - 1381 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Chichester
Blackwell Publishing Ltd
01-09-2013
Wiley Hindawi Limited |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | SUMMARY
The effects of several modifications on TiO2 P25 in producing hydrogen from glycerol–water mixture have been investigated. Prior to further modification, TiO2 underwent hydrothermal treatment at 130°C for several hours to obtain nanotube shape. TiO2 nanotubes (TiNT) was then doped with platinum (Pt) and nitrogen (N) by employing photo‐deposition and impregnation method, respectively. SEM and XRD results showed that Pt‐N‐TiNT was successfully obtained as pure anatase crystal structure. The effects of glycerol content to photocatalytic activity of hydrogen production have also been studied, result in 50%v of glycerol as the optimum concentration correspond to the stoichiometric volume ratio of glycerol reforming. The results of photo‐production test showed that TiNT (nanotube) could enhance hydrogen generation by two times compared with unmodified P25 (nanoparticle). Meanwhile, simultaneous modification of TiNT by Pt and N dopants (Pt‐N‐TiNT) lead to activity improvement up to 13 times compared with P25. The output of this study may contribute toward finding an alternative pathway to produce H2 from renewable resources. Copyright © 2012 John Wiley & Sons, Ltd. |
---|---|
AbstractList | SUMMARY
The effects of several modifications on TiO2 P25 in producing hydrogen from glycerol–water mixture have been investigated. Prior to further modification, TiO2 underwent hydrothermal treatment at 130°C for several hours to obtain nanotube shape. TiO2 nanotubes (TiNT) was then doped with platinum (Pt) and nitrogen (N) by employing photo‐deposition and impregnation method, respectively. SEM and XRD results showed that Pt‐N‐TiNT was successfully obtained as pure anatase crystal structure. The effects of glycerol content to photocatalytic activity of hydrogen production have also been studied, result in 50%v of glycerol as the optimum concentration correspond to the stoichiometric volume ratio of glycerol reforming. The results of photo‐production test showed that TiNT (nanotube) could enhance hydrogen generation by two times compared with unmodified P25 (nanoparticle). Meanwhile, simultaneous modification of TiNT by Pt and N dopants (Pt‐N‐TiNT) lead to activity improvement up to 13 times compared with P25. The output of this study may contribute toward finding an alternative pathway to produce H2 from renewable resources. Copyright © 2012 John Wiley & Sons, Ltd. SUMMARY The effects of several modifications on TiO2 P25 in producing hydrogen from glycerol-water mixture have been investigated. Prior to further modification, TiO2 underwent hydrothermal treatment at 130°C for several hours to obtain nanotube shape. TiO2 nanotubes (TiNT) was then doped with platinum (Pt) and nitrogen (N) by employing photo-deposition and impregnation method, respectively. SEM and XRD results showed that Pt-N-TiNT was successfully obtained as pure anatase crystal structure. The effects of glycerol content to photocatalytic activity of hydrogen production have also been studied, result in 50%v of glycerol as the optimum concentration correspond to the stoichiometric volume ratio of glycerol reforming. The results of photo-production test showed that TiNT (nanotube) could enhance hydrogen generation by two times compared with unmodified P25 (nanoparticle). Meanwhile, simultaneous modification of TiNT by Pt and N dopants (Pt-N-TiNT) lead to activity improvement up to 13 times compared with P25. The output of this study may contribute toward finding an alternative pathway to produce H2 from renewable resources. Copyright © 2012 John Wiley & Sons, Ltd. [PUBLICATION ABSTRACT] |
Author | Ibadurrohman, Muhammad Valentina Slamet Tristantini, Dewi |
Author_xml | – sequence: 1 surname: Slamet fullname: Slamet email: Correspondence: Slamet, Universitas Indonesia, Chemical Engineering, Depok, West Java, Indonesia., slamet@che.ui.ac.id organization: Universitas Indonesia, Chemical Engineering, West Java, Depok, Indonesia – sequence: 2 givenname: Dewi surname: Tristantini fullname: Tristantini, Dewi organization: Universitas Indonesia, Chemical Engineering, West Java, Depok, Indonesia – sequence: 3 surname: Valentina fullname: Valentina organization: Universitas Indonesia, Chemical Engineering, West Java, Depok, Indonesia – sequence: 4 givenname: Muhammad surname: Ibadurrohman fullname: Ibadurrohman, Muhammad organization: Universitas Indonesia, Chemical Engineering, West Java, Depok, Indonesia |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27638572$$DView record in Pascal Francis |
BookMark | eNpFkF9LwzAUxYNMcJviVyiITxK9-dNmeRQ3pzA2EcW9haxNt2rXzDR19tubsTGfDpfz495zbg91KlsZhC4J3BIAemfcLZVMnqAuASkxIXzeQV1gCcMSxPwM9er6EyB4RHRR9rKy3qba67L1RRqt2szZpamijbNZk_rCVlHu7Dpalm1qnC3xVnvjonXx6xtnIvsThhePp_itmNGo0pX1zcJEm_-1tT9Hp7kua3Nx0D56fxy9PTzhyWz8_HA_wUtGucScxlxnMRMx5ANOFwsJWjDNc0h5sshMzPJQTGtCKIckzkgsDDUsAW4oMJ6yPrra7w3hvxtTe_VpG1eFk4owKSXlVJBAXR8oXae6zJ2u0qJWG1estWsVFQkbxIIG7mbPbYvStEefgNr9WRmndn9Wo9edBBrv6aL25vdIa_elEhEqqY_pWL1-wASGQxni_AH-XoJP |
CODEN | IJERDN |
ContentType | Journal Article |
Copyright | Copyright © 2012 John Wiley & Sons, Ltd. 2014 INIST-CNRS Copyright © 2013 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: Copyright © 2012 John Wiley & Sons, Ltd. – notice: 2014 INIST-CNRS – notice: Copyright © 2013 John Wiley & Sons, Ltd. |
DBID | BSCLL IQODW 7SP 7ST 7TB 7TN 8FD C1K F1W F28 FR3 H96 KR7 L.G L7M SOI |
DOI | 10.1002/er.2939 |
DatabaseName | Istex Pascal-Francis Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Oceanic Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Environmental Sciences and Pollution Management Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1099-114X |
EndPage | 1381 |
ExternalDocumentID | 3019293651 27638572 ER2939 ark_67375_WNG_RW0L0DD9_1 |
Genre | article |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8WZ 930 A03 A6W AAESR AAEVG AAHHS AAJEY AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJCF ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFKRA AFPWT AFRAH AFZJQ AI. AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARAPS ASPBG ATCPS ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BKSAR BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CCPQU CMOOK CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 FEDTE G-S G.N GNP GODZA GROUPED_DOAJ H.T H.X H13 HCIFZ HF~ HHY HVGLF HZ~ H~9 IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M59 M7S MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PATMY PCBAR PIMPY PTHSS PYCSY Q.N Q11 QB0 QRW R.K RHX RIWAO RJQFR RNS ROL RWI RX1 RYL SAMSI SUPJJ TN5 UB1 V2E VH1 W8V W99 WBKPD WH7 WIH WIK WLBEL WOHZO WQJ WWI WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT G8K 8W4 AAPBV ABFLS ABHUG ABPTK ACXME ADAWD ADDAD AFVGU AGJLS IPNFZ IQODW MEWTI WRC 7SP 7ST 7TB 7TN 8FD C1K F1W F28 FR3 H96 KR7 L.G L7M SOI |
ID | FETCH-LOGICAL-g3249-4254ad53750f842bb90a73a4f0c46bde53f939aa1124065d157e2e3604e2034c3 |
IEDL.DBID | 33P |
ISSN | 0363-907X |
IngestDate | Thu Oct 10 16:17:26 EDT 2024 Fri Nov 25 06:02:08 EST 2022 Sat Aug 24 01:01:20 EDT 2024 Wed Oct 30 09:51:32 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Scanning electron microscopy Hydrogen Nanoparticle Nanotube Glycerol Pt-N-TiO Nitrogen Impregnation nanotubes Renewable energy Platinum X ray diffractometry photocatalysis Hydrogen production Crystalline structure |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-g3249-4254ad53750f842bb90a73a4f0c46bde53f939aa1124065d157e2e3604e2034c3 |
Notes | ArticleID:ER2939 ark:/67375/WNG-RW0L0DD9-1 istex:1CF7D76F56E888E709555E3BFA2B190DFAA79F48 |
PQID | 1399924271 |
PQPubID | 996365 |
PageCount | 10 |
ParticipantIDs | proquest_journals_1399924271 pascalfrancis_primary_27638572 wiley_primary_10_1002_er_2939_ER2939 istex_primary_ark_67375_WNG_RW0L0DD9_1 |
PublicationCentury | 2000 |
PublicationDate | September 2013 |
PublicationDateYYYYMMDD | 2013-09-01 |
PublicationDate_xml | – month: 09 year: 2013 text: September 2013 |
PublicationDecade | 2010 |
PublicationPlace | Chichester |
PublicationPlace_xml | – name: Chichester – name: Bognor Regis |
PublicationTitle | International journal of energy research |
PublicationTitleAlternate | Int. J. Energy Res |
PublicationYear | 2013 |
Publisher | Blackwell Publishing Ltd Wiley Hindawi Limited |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley – name: Hindawi Limited |
References | Herrmann J-M. Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catalysis Today 1999; 53:115-129. Jitputti J, Suzuki Y, Yoshikawa S. Synthesis of TiO2 nanowires and their photocatalytic activity for hydrogen evolution. Catalysis Communications 2008; 9:1265-1271. Bahruji H, Bowker M, Davies PR, Al-Mazroai LS, Dickinson A, Greaves J, James D, Millard L, Pedrono F. Sustainable H2 gas production by photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry 2010; 216:115-118. Gombac V, Sordelli L, Montini T, Delgado JJ, Adamski A, Adami G, Cargnello M, Bernal S, Fornasiero P. CuOx-TiO2 photocatalysts for H2 production from ethanol and glycerol solutions. Journal of Physical Chemistry A 2010; 114:3916-3925. Wang FC, Liu CH, Liu CW, Chao JH, Lin CH. Effect of Pt loading order on photocatalytic activity of Pt/TiO2 nanofiber in generation of H2 from neat ethanol. Journal of Physical Chemistry C 2009; 113:13832-13840. Slamet, Anny, Setiadi. Photocatalytic hydrogen generation from glycerol and water using Pt loaded N-doped TiO2 nanotube. International Journal of Engineering Technology IJET-IJENS 2011, 11: 91-95. Sreethawong T, Puangpetch T, Chavadej S, Yoshikawa S. Quantifying influence of operational parameters on photocatalytic H2 evolution over Pt-loaded nanocrystalline mesoporous TiO2 prepared by single-step sol-gel process with surfactant template. Journal of Power Sources 2007; 165:861-869. Strataki N, Bekiari V, Kondarides D, Lianos P. Hydrogen production by photocatalytic alcohol reforming employing highly efficient nanocrystalline titania films. Applied Catalysis B: Environmental 2007; 77:184-189. Li M, Li Y, Peng S, Lu G, Li S. Photocatalytic hydrogen generation using glycerol wastewater over Pt/TiO2. Frontiers of Chemistry in China 2009; 4:32-38. Burda C, Lou Y, Chen X, Samia ACS, Stout J, Gole JL. Enhanced nitrogen doping in TiO2 nanoparticles. Nano Letters 2003; 3:1049-1051. Meskin PE, Ivanov VK, Barantchikov AE, Churagulov BR, Tretyakov YD. Ultrasonically assisted hydrothermal synthesis of nanocrystalline ZrO2, TiO2, NiFe2O4 and Ni0.5Zn0.5Fe2O4 powders. Ultrasonics Sonochemistry 2006; 13:47-53. Kondarides DI, Daskalaki VM, Patsoura A, Verykios XE. Hydrogen production by photo-induced reforming of biomass components and derivatives at ambient conditions. Catalysis Letters 2008; 122:26-32. Daskalaki V, Kondarides D. Efficient production of hydrogen by photo-induced reforming of glycerol at ambient conditions. Catalysis Today 2009; 144:75-80. Xu SP, Sun DD. Significant improvement of photocatalytic hydrogen generation rate over TiO2 with deposited CuO. International Journal of Hydrogen Energy 2009; 34:6096-6104. Huang LH, Sun C, Liu YL. Pt/N-codoped TiO2 nanotubes and its photocatalytic activity under visible light. Applied Surface Science 2007; 253:7029-7035. User Manual of Autosorb-6B. Quantachrome Corp.: New York, 1992. Lin WC, Yang WD, Huang IL, Wu TS, Chung ZJ. Hydrogen production from methanol/water photocatalytic decomposition using Pt/TiO2-xNx catalyst. Energy & Fuels 2009; 23:2192-2196. Slamet, Nasution HW, Purnama E, Kosela S, Gunlazuardi J. Photocatalytic reduction of CO2 on copper-doped Titania catalysts prepared by improved-impregnation method. Catalysis Communications 2005; 6:313-319. Navarro RM, Sanchez-Sanchez MC, Alvarez-Galvan MC, Valle F, Fierro JLG. Hydrogen production from renewable sources: biomass and photocatalytic opportunities. Energy & Environmental Science 2009; 2:35-54. Zhang JL, Wu YM, Xing MY, Leghari SAK, Sajjad S. Development of modified N doped TiO2 photocatalyst with metals, nonmetals and metal oxides. Energy & Environmental Science 2010; 3:715-726. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 2001; 293:269-271. Li YX, Lu GX, Li SB. Photocatalytic hydrogen generation and decomposition of oxalic acid over platinized TiO2. Applied Catalysis A: General 2001; 214:179-185. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K. Titania Nanotubes Prepared by Chemical Processing. Advanced Materials 1999; 11:1307-1311. Al-Mazroai LS, Bowker M, Davies P, Dickinson A, Greaves J, James D, Millard L. The photocatalytic reforming of methanol. Catalysis Today 2007; 122:46-50. Wei LF, Zheng XJ, Zhang ZH, Wei YJ, Xie B, Wei MB, Sun XL. A systematic study of photocatalytic H2 production from propionic acid solution over Pt/TiO2 photocatalyst. International Journal of Energy Research 2012; 36:75-86. Ou H-H, Lo S-L. Review of titania nanotubes synthesized via the hydrothermal treatment: Fabrication, modification, and application. Separation and Purification Technology 2007; 58:179-191. Ma Y, Lin Y, Xiao X, Zhou X, Li X. Sonication-hydrothermal combination technique for the synthesis of titanate nanotubes from commercially available precursors. Materials Research Bulletin 2006; 41:237-243. Mohamed RM. Characterization and catalytic properties of nano-sized Pt metal catalyst on TiO2-SiO2 synthesized by photo-assisted deposition and impregnation methods. Journal of Materials Processing Technology 2009; 209:577-583. 2009; 23 2006; 13 2007; 165 2007; 122 2008; 9 2011; 11 2009; 113 1992 2012; 36 2008; 122 2007; 77 2007; 58 2009; 34 2006; 41 2001; 293 2010; 216 2010; 114 2007; 253 2009; 144 2003; 3 1999; 11 2005; 6 1999; 53 2009; 4 2010; 3 2009; 2 2003; 146 2009; 209 2001; 214 |
References_xml | – volume: 113 start-page: 13832 year: 2009 end-page: 13840 article-title: Effect of Pt loading order on photocatalytic activity of Pt/TiO nanofiber in generation of H from neat ethanol publication-title: Journal of Physical Chemistry C – volume: 58 start-page: 179 year: 2007 end-page: 191 article-title: Review of titania nanotubes synthesized via the hydrothermal treatment: Fabrication, modification, and application publication-title: Separation and Purification Technology – volume: 13 start-page: 47 year: 2006 end-page: 53 article-title: Ultrasonically assisted hydrothermal synthesis of nanocrystalline ZrO , TiO , NiFe O and Ni0.5Zn0.5Fe O powders publication-title: Ultrasonics Sonochemistry – volume: 11 start-page: 1307 year: 1999 end-page: 1311 article-title: Titania Nanotubes Prepared by Chemical Processing publication-title: Advanced Materials – volume: 146 start-page: 791 year: 2003 end-page: 794 – volume: 2 start-page: 35 year: 2009 end-page: 54 article-title: Hydrogen production from renewable sources: biomass and photocatalytic opportunities publication-title: Energy & Environmental Science – volume: 53 start-page: 115 year: 1999 end-page: 129 article-title: Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants publication-title: Catalysis Today – volume: 114 start-page: 3916 year: 2010 end-page: 3925 article-title: CuO –TiO photocatalysts for H production from ethanol and glycerol solutions publication-title: Journal of Physical Chemistry A – volume: 11 start-page: 91 year: 2011 end-page: 95 article-title: Photocatalytic hydrogen generation from glycerol and water using Pt loaded N‐doped TiO nanotube publication-title: International Journal of Engineering Technology IJET‐IJENS – volume: 4 start-page: 32 year: 2009 end-page: 38 article-title: Photocatalytic hydrogen generation using glycerol wastewater over Pt/TiO publication-title: Frontiers of Chemistry in China – volume: 253 start-page: 7029 year: 2007 end-page: 7035 article-title: Pt/N‐codoped TiO nanotubes and its photocatalytic activity under visible light publication-title: Applied Surface Science – volume: 6 start-page: 313 year: 2005 end-page: 319 article-title: Photocatalytic reduction of CO on copper‐doped Titania catalysts prepared by improved‐impregnation method publication-title: Catalysis Communications – volume: 34 start-page: 6096 year: 2009 end-page: 6104 article-title: Significant improvement of photocatalytic hydrogen generation rate over TiO with deposited CuO publication-title: International Journal of Hydrogen Energy – volume: 214 start-page: 179 year: 2001 end-page: 185 article-title: Photocatalytic hydrogen generation and decomposition of oxalic acid over platinized TiO publication-title: Applied Catalysis A: General – year: 1992 – volume: 36 start-page: 75 year: 2012 end-page: 86 article-title: A systematic study of photocatalytic H production from propionic acid solution over Pt/TiO photocatalyst publication-title: International Journal of Energy Research – volume: 165 start-page: 861 year: 2007 end-page: 869 article-title: Quantifying influence of operational parameters on photocatalytic H evolution over Pt‐loaded nanocrystalline mesoporous TiO prepared by single‐step sol–gel process with surfactant template publication-title: Journal of Power Sources – volume: 3 start-page: 1049 year: 2003 end-page: 1051 article-title: Enhanced nitrogen doping in TiO nanoparticles publication-title: Nano Letters – volume: 9 start-page: 1265 year: 2008 end-page: 1271 article-title: Synthesis of TiO nanowires and their photocatalytic activity for hydrogen evolution publication-title: Catalysis Communications – volume: 3 start-page: 715 year: 2010 end-page: 726 article-title: Development of modified N doped TiO photocatalyst with metals, nonmetals and metal oxides publication-title: Energy & Environmental Science – volume: 122 start-page: 26 year: 2008 end-page: 32 article-title: Hydrogen production by photo‐induced reforming of biomass components and derivatives at ambient conditions publication-title: Catalysis Letters – volume: 209 start-page: 577 year: 2009 end-page: 583 article-title: Characterization and catalytic properties of nano‐sized Pt metal catalyst on TiO ‐SiO synthesized by photo-assisted deposition and impregnation methods publication-title: Journal of Materials Processing Technology – volume: 122 start-page: 46 year: 2007 end-page: 50 article-title: The photocatalytic reforming of methanol publication-title: Catalysis Today – volume: 41 start-page: 237 year: 2006 end-page: 243 article-title: Sonication–hydrothermal combination technique for the synthesis of titanate nanotubes from commercially available precursors publication-title: Materials Research Bulletin – volume: 23 start-page: 2192 year: 2009 end-page: 2196 article-title: Hydrogen production from methanol/water photocatalytic decomposition using Pt/TiO –xN catalyst publication-title: Energy & Fuels – volume: 77 start-page: 184 year: 2007 end-page: 189 article-title: Hydrogen production by photocatalytic alcohol reforming employing highly efficient nanocrystalline titania films publication-title: Applied Catalysis B: Environmental – volume: 216 start-page: 115 year: 2010 end-page: 118 article-title: Sustainable H gas production by photocatalysis publication-title: Journal of Photochemistry and Photobiology A: Chemistry – volume: 144 start-page: 75 year: 2009 end-page: 80 article-title: Efficient production of hydrogen by photo‐induced reforming of glycerol at ambient conditions publication-title: Catalysis Today – volume: 293 start-page: 269 year: 2001 end-page: 271 article-title: Visible‐light photocatalysis in nitrogen‐doped titanium oxides publication-title: Science |
SSID | ssj0009917 |
Score | 2.405685 |
Snippet | SUMMARY
The effects of several modifications on TiO2 P25 in producing hydrogen from glycerol–water mixture have been investigated. Prior to further... SUMMARY The effects of several modifications on TiO2 P25 in producing hydrogen from glycerol-water mixture have been investigated. Prior to further... |
SourceID | proquest pascalfrancis wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1372 |
SubjectTerms | Alternative fuels. Production and utilization Applied sciences Energy Exact sciences and technology Fuels glycerol Hydrogen nanotubes photocatalysis Pt-N-TiO2 |
Title | Photocatalytic hydrogen production from glycerol-water mixture over Pt-N-TiO2 nanotube photocatalyst |
URI | https://api.istex.fr/ark:/67375/WNG-RW0L0DD9-1/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fer.2939 https://www.proquest.com/docview/1399924271 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29TsMwELaACQb-EYWCPCC2QOIkdTwiWmBApSog2CwntqH8JFWSCrrxCEi8YZ-Es1NauiExJFl8UeLz2d_Zd98hdKC9xJPKV2DfUjiBENRhDanNcSF4K4nHqLalE65p-z5qtgxNzqTUV8UPMdlwM5Zh52tj4CIujqekoSo_gqXKpO6Bj2CTN_zOlG6X2Vq79pQS3L_7Kl3WSB6P5QCMmn58N8GQooD-0FUhixmk-Ruv2gXnbOUfn7qKlscoE59Uw2INzal0HS394h7cQE-dx6zM7O7NEFrhx6HMMxhNuF9xwIK-sMk9wQ8vw0Tl2cvo4-sNgGmOX3vv5tgBm-BP3ClHH59tuG56VwSnIs3KQaxwf_ryotxEt2etm9MLZ1x4wXkAfMUcsONAyNAHNKGjgMQxcwX1RaDdJGjEUoW-ht8RArAa4IFQeiFVRPkNN1DE9YPE30ILaZaqbYRJnCgWM51AgyB0VQQ3wjzNtNYRlbSGDq0aeL8i1-AifzaxZjTkd-1z3r1zL91mk3GvhvZn9DQRIDBDRiElNVT_URwf22HBAd8y8DAJBfkDq6KJXMXXTLjKuVEOb3XNY-dvzXbRIrF1MUywWR0tlPlA7aH5Qg727UD8Bkyd4_U |
link.rule.ids | 315,782,786,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB4BPbQcSv8QSyn1AfWWkjjOOu6tYpeCut2u6FZws5zYBlpIVtmsyt54hEq8IU_C2Fl24VaphyQXT5R4ZuzP9sw3ADs2yiNtYoP-rVXAlOKBaGvrjgtxtZJHgltfOuEH75-kna6jyfl0nwvT8EPMN9ycZ_jx2jm425DeXbCGmuojzlViGZ6wNpqhS9-IBwvCXeGr7fpzSlwAnjQJs050dyaIcNT15JULh1Rj7BHblLJ4hDUfIlY_5eyv_c_HvoDnM6BJPjeW8RKWTPEKVh_QD76GX4Ozsi79Bs4UW5Gzqa5KNCgyamhgUWXEpZ-Q04tpbqry4vb65g9i04pcnl-5kwfi4j_JoL69_tvHa3j-nZJCFWU9yQwZLV4-rt_Az_3ucO8gmNVeCE4RYokAXZkpncQIKGzKaJaJUPFYMRvmrJ1pk8QWf0cphGsICRIdJdxQE7dDZmgYszxeh5WiLMwGEJrlRmTC5tiAJaFJ8UZFZIW1NuWat-CD14McNfwaUlW_XbgZT-Rx_4s8Og57YacjZNSC7UeKmgtQHCTThNMWbN1rTs5ccSwR4gpcZFKO8jteR3O5hrKZSlNJpxzZPXKPzX9r9h6eHgy_9WTvsP_1LTyjvkyGiz3bgpW6mph3sDzWk21vlXemeugd |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB71ISE4QHlULJTiQ8UtNLGddXxE7C6tWi2rUtTeLCe2-yRZZbOie-tPQOIf9pcwdpbd9obEIcnFEyWeGfsbe_wNwI5LisRYZtG_jY641iKSXeP8diFGK0UihQulE76J4WnW63uanEWpr5YfYrHg5j0jjNfewcfG7S5JQ239EacquQrrHEG4p81nbLTk25Wh2G7YpsT477Q9L-tFd-eCiEZ9R974bEg9wQ5xbSWLB1DzPmANM87g2X986wY8ncNM8qm1i-ewYssX8OQe-eBLuBydV00Vlm9m2Iqcz0xdoTmRcUsCiwoj_vAJObueFbauru9uf_9EZFqTHxc3ft-B-OxPMmrubn8N8Tq--EpJqcuqmeaWjJcvnzSv4Pugf_x5L5pXXojOEGDJCB2Za5MyhBMu4zTPZawF09zFBe_mxqbM4e9ojWANAUFqklRYalk35pbGjBdsE9bKqrSvgdC8sDKXrsAGPI1thjcqEyedc5kwogMfghrUuGXXULq-8slmIlUnwy_q6CQ-jHs9qZIObD_Q00KA4hCZpYJ2YOuv4tTcEScKAa7EEJMKlN8JKlrItYTNVNlaeeWo_pF_vPm3Zu_h0ag3UIf7w4O38JiGGhk-8WwL1pp6at_B6sRMt4NN_gH4UubD |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photocatalytic+hydrogen+production+from+glycerol%E2%80%93water+mixture+over+Pt%E2%80%90N%E2%80%90TiO2+nanotube+photocatalyst&rft.jtitle=International+journal+of+energy+research&rft.au=Slamet&rft.au=Tristantini%2C+Dewi&rft.au=Valentina&rft.au=Ibadurrohman%2C+Muhammad&rft.date=2013-09-01&rft.issn=0363-907X&rft.eissn=1099-114X&rft.volume=37&rft.issue=11&rft.spage=1372&rft.epage=1381&rft_id=info:doi/10.1002%2Fer.2939&rft.externalDBID=10.1002%252Fer.2939&rft.externalDocID=ER2939 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-907X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-907X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-907X&client=summon |