High Performance Thermoelectric Power of Bi0.5Sb1.5Te3 Through Synergistic Cu2GeSe3 and Se Incorporations

Bi2Te3‐based alloys are the benchmark for commercial thermoelectric (TE) materials, the widespread demand for low‐grade waste heat recovery and solid‐state refrigeration makes it imperative to enhance the figure‐of‐merits. In this study, high‐performance Bi0.5Sb1.5Te3 (BST) is realized by incorporat...

Full description

Saved in:
Bibliographic Details
Published in:Small (Weinheim an der Bergstrasse, Germany) Vol. 20; no. 12; pp. e2306701 - n/a
Main Authors: Pang, Kaikai, Yuan, Minhui, Zhang, Qiang, Li, Yanan, Zhang, Yuyou, Zhou, Wenjie, Wu, Gang, Tan, Xiaojian, Noudem, Jacques G., Cui, Chen, Hu, Haoyang, Wu, Jiehua, Sun, Peng, Liu, Guo‐Qiang, Jiang, Jun
Format: Journal Article
Language:English
Published: Weinheim Wiley Subscription Services, Inc 01-03-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Bi2Te3‐based alloys are the benchmark for commercial thermoelectric (TE) materials, the widespread demand for low‐grade waste heat recovery and solid‐state refrigeration makes it imperative to enhance the figure‐of‐merits. In this study, high‐performance Bi0.5Sb1.5Te3 (BST) is realized by incorporating Cu2GeSe3 and Se. Concretely, the diffusion of Cu and Ge atoms optimizes the hole concentration and raises the density‐of‐states effective mass (md*), compensating for the loss of “donor‐like effect” exacerbated by ball milling. The subsequent Se addition further increases md*, enabling a total 28% improvement of room‐temperature power factor (S2σ), reaching 43.6 µW cm−1 K−2 compared to the matrix. Simultaneously, the lattice thermal conductivity is also significantly suppressed by multiscale scattering sources represented by Cu‐rich nanoparticles and dislocation arrays. The synergistic effects yield a peak ZT of 1.41 at 350 K and an average ZT of 1.23 (300–500 K) in the Bi0.5Sb1.5Te2.94Se0.06 + 0.11 wt.% Cu2GeSe3 sample. More importantly, the integrated 17‐pair TE module achieves a conversion efficiency of 6.4%, 80% higher than the commercial one at ΔT = 200 K. These results validate that the facile composition optimization of the BST/Cu2GeSe3/Se is a promising strategy to improve the application of BST‐based TE modules. The two‐step optimization strategy, which contributed to increased density‐of‐state effective mass and microstructural modulation with little loss of hole mobility, significantly promotes power factor, and suppresses thermal conductivity, yielding a peak ZT of 1.41 at 350 K and a high average ZT (300–500 K) of 1.23 in the Bi0.5Sb1.5Te2.94Se0.06+0.11 wt.% Cu2GeSe3 sample. Most impressively, by integrating the n‐type zone‐melted Bi2Te2.7Se0.3, the fabricated 17‐pair thermoelectric module demonstrate an overwhelming conversion efficiency of up to 6.4% at ΔT = 200 K.
AbstractList Bi2Te3‐based alloys are the benchmark for commercial thermoelectric (TE) materials, the widespread demand for low‐grade waste heat recovery and solid‐state refrigeration makes it imperative to enhance the figure‐of‐merits. In this study, high‐performance Bi0.5Sb1.5Te3 (BST) is realized by incorporating Cu2GeSe3 and Se. Concretely, the diffusion of Cu and Ge atoms optimizes the hole concentration and raises the density‐of‐states effective mass (md*), compensating for the loss of “donor‐like effect” exacerbated by ball milling. The subsequent Se addition further increases md*, enabling a total 28% improvement of room‐temperature power factor (S2σ), reaching 43.6 µW cm−1 K−2 compared to the matrix. Simultaneously, the lattice thermal conductivity is also significantly suppressed by multiscale scattering sources represented by Cu‐rich nanoparticles and dislocation arrays. The synergistic effects yield a peak ZT of 1.41 at 350 K and an average ZT of 1.23 (300–500 K) in the Bi0.5Sb1.5Te2.94Se0.06 + 0.11 wt.% Cu2GeSe3 sample. More importantly, the integrated 17‐pair TE module achieves a conversion efficiency of 6.4%, 80% higher than the commercial one at ΔT = 200 K. These results validate that the facile composition optimization of the BST/Cu2GeSe3/Se is a promising strategy to improve the application of BST‐based TE modules.
Bi2Te3-based alloys are the benchmark for commercial thermoelectric (TE) materials, the widespread demand for low-grade waste heat recovery and solid-state refrigeration makes it imperative to enhance the figure-of-merits. In this study, high-performance Bi0.5Sb1.5Te3 (BST) is realized by incorporating Cu2GeSe3 and Se. Concretely, the diffusion of Cu and Ge atoms optimizes the hole concentration and raises the density-of-states effective mass (md *), compensating for the loss of "donor-like effect" exacerbated by ball milling. The subsequent Se addition further increases md *, enabling a total 28% improvement of room-temperature power factor (S2σ), reaching 43.6 µW cm-1 K-2 compared to the matrix. Simultaneously, the lattice thermal conductivity is also significantly suppressed by multiscale scattering sources represented by Cu-rich nanoparticles and dislocation arrays. The synergistic effects yield a peak ZT of 1.41 at 350 K and an average ZT of 1.23 (300-500 K) in the Bi0.5Sb1.5Te2.94Se0.06 + 0.11 wt.% Cu2GeSe3 sample. More importantly, the integrated 17-pair TE module achieves a conversion efficiency of 6.4%, 80% higher than the commercial one at ΔT = 200 K. These results validate that the facile composition optimization of the BST/Cu2GeSe3/Se is a promising strategy to improve the application of BST-based TE modules.
Bi2Te3‐based alloys are the benchmark for commercial thermoelectric (TE) materials, the widespread demand for low‐grade waste heat recovery and solid‐state refrigeration makes it imperative to enhance the figure‐of‐merits. In this study, high‐performance Bi0.5Sb1.5Te3 (BST) is realized by incorporating Cu2GeSe3 and Se. Concretely, the diffusion of Cu and Ge atoms optimizes the hole concentration and raises the density‐of‐states effective mass (md*), compensating for the loss of “donor‐like effect” exacerbated by ball milling. The subsequent Se addition further increases md*, enabling a total 28% improvement of room‐temperature power factor (S2σ), reaching 43.6 µW cm−1 K−2 compared to the matrix. Simultaneously, the lattice thermal conductivity is also significantly suppressed by multiscale scattering sources represented by Cu‐rich nanoparticles and dislocation arrays. The synergistic effects yield a peak ZT of 1.41 at 350 K and an average ZT of 1.23 (300–500 K) in the Bi0.5Sb1.5Te2.94Se0.06 + 0.11 wt.% Cu2GeSe3 sample. More importantly, the integrated 17‐pair TE module achieves a conversion efficiency of 6.4%, 80% higher than the commercial one at ΔT = 200 K. These results validate that the facile composition optimization of the BST/Cu2GeSe3/Se is a promising strategy to improve the application of BST‐based TE modules. The two‐step optimization strategy, which contributed to increased density‐of‐state effective mass and microstructural modulation with little loss of hole mobility, significantly promotes power factor, and suppresses thermal conductivity, yielding a peak ZT of 1.41 at 350 K and a high average ZT (300–500 K) of 1.23 in the Bi0.5Sb1.5Te2.94Se0.06+0.11 wt.% Cu2GeSe3 sample. Most impressively, by integrating the n‐type zone‐melted Bi2Te2.7Se0.3, the fabricated 17‐pair thermoelectric module demonstrate an overwhelming conversion efficiency of up to 6.4% at ΔT = 200 K.
Author Cui, Chen
Zhou, Wenjie
Liu, Guo‐Qiang
Zhang, Qiang
Tan, Xiaojian
Sun, Peng
Li, Yanan
Hu, Haoyang
Wu, Jiehua
Yuan, Minhui
Zhang, Yuyou
Wu, Gang
Noudem, Jacques G.
Jiang, Jun
Pang, Kaikai
Author_xml – sequence: 1
  givenname: Kaikai
  surname: Pang
  fullname: Pang, Kaikai
  organization: Chinese Academy of Sciences
– sequence: 2
  givenname: Minhui
  surname: Yuan
  fullname: Yuan, Minhui
  organization: Shenzhen Campus of Sun Yat‐sen University
– sequence: 3
  givenname: Qiang
  surname: Zhang
  fullname: Zhang, Qiang
  email: qiangzhang@nimte.ac.cn
  organization: University of Chinese Academy of Sciences
– sequence: 4
  givenname: Yanan
  surname: Li
  fullname: Li, Yanan
  organization: Chinese Academy of Sciences
– sequence: 5
  givenname: Yuyou
  surname: Zhang
  fullname: Zhang, Yuyou
  organization: Chinese Academy of Sciences
– sequence: 6
  givenname: Wenjie
  surname: Zhou
  fullname: Zhou, Wenjie
  organization: Chinese Academy of Sciences
– sequence: 7
  givenname: Gang
  surname: Wu
  fullname: Wu, Gang
  organization: University of Chinese Academy of Sciences
– sequence: 8
  givenname: Xiaojian
  orcidid: 0000-0002-6949-9255
  surname: Tan
  fullname: Tan, Xiaojian
  email: tanxiaojian@nimte.ac.cn
  organization: University of Chinese Academy of Sciences
– sequence: 9
  givenname: Jacques G.
  surname: Noudem
  fullname: Noudem, Jacques G.
  organization: Normandie University
– sequence: 10
  givenname: Chen
  surname: Cui
  fullname: Cui, Chen
  organization: Chinese Academy of Sciences
– sequence: 11
  givenname: Haoyang
  surname: Hu
  fullname: Hu, Haoyang
  organization: Chinese Academy of Sciences
– sequence: 12
  givenname: Jiehua
  surname: Wu
  fullname: Wu, Jiehua
  organization: University of Chinese Academy of Sciences
– sequence: 13
  givenname: Peng
  surname: Sun
  fullname: Sun, Peng
  organization: University of Chinese Academy of Sciences
– sequence: 14
  givenname: Guo‐Qiang
  surname: Liu
  fullname: Liu, Guo‐Qiang
  organization: University of Chinese Academy of Sciences
– sequence: 15
  givenname: Jun
  surname: Jiang
  fullname: Jiang, Jun
  email: jjun@nimte.ac.cn
  organization: University of Chinese Academy of Sciences
BookMark eNpdkM1vwjAMxaOJSQO2686VdtkF5iT9SI8b2gCp05DKzlHauhDUJiyhQvz3K2LisJNt-een5zciA2MNEvJIYUoB2Itvm2bKgHGIE6A3ZEhjyiexYOng2lO4IyPvdwCcsjAZEr3Qm22wQldb1ypTYrDeomstNlgenC6DlT2iC2wdvGmYRnlBp9EaeU852_WX-cmg22h_6NFZx-aY90tlqiDHYGlK6_bWqYO2xt-T21o1Hh_-6ph8f7yvZ4tJ9jVfzl6zyYYzoBMlIiGqmiYYCyziFEKseAFKhTyKRKFSLoqiBKSxSsKqOP-hEJALDKswSoCPyfNFd-_sT4f-IFvtS2waZdB2XjIhUhZyLkSPPv1Dd7ZzpncnWZpw3utFZ8H0Qh11gye5d7pV7iQpyHPs8hy7vMYu888su078Fz5leSM
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH
DBID 7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202306701
DatabaseName Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID SMLL202306701
Genre article
GrantInformation_xml – fundername: Zhejiang Provincial Key R&D Program
  funderid: 2021C01026
– fundername: National Natural Science Foundation of China
  funderid: U21A2079; 52002382
– fundername: International Cooperation Project of Ningbo City
  funderid: 2023H002
– fundername: Zhejiang Provincial Natural Science Foundation of China
  funderid: LR21E020002
– fundername: Ningbo Science & Technology Innovation 2025 Major Project
  funderid: 2022Z187
– fundername: Zhejiang Provincial High‐level Talent Special Support Plan
  funderid: 2020R52032
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAIHA
AANLZ
AAONW
AAXRX
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
7SR
7U5
8BQ
8FD
AAMNL
JG9
L7M
7X8
ID FETCH-LOGICAL-g3201-a8588df17e68eb6904ed3b0aa43558ba938bbc0e16a74db0312ae0e38e4d45703
IEDL.DBID 33P
ISSN 1613-6810
IngestDate Sat Aug 17 05:54:46 EDT 2024
Thu Nov 21 03:04:15 EST 2024
Sat Aug 24 01:05:53 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-g3201-a8588df17e68eb6904ed3b0aa43558ba938bbc0e16a74db0312ae0e38e4d45703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6949-9255
PQID 2973345750
PQPubID 1046358
PageCount 12
ParticipantIDs proquest_miscellaneous_2889243388
proquest_journals_2973345750
wiley_primary_10_1002_smll_202306701_SMLL202306701
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2022; 375
2023; 32
2023; 35
2023; 380
2021; 21
2023; 33
2023; 6
2013; 23
2019; 10
2023; 145
2019; 12
2008; 7
2020; 13
2020; 367
2020; 10
1962; 33
2023; 107
2012; 489
2014; 62
2017; 114
2011; 473
2020; 7
2017; 31
2018; 8
2018; 3
2021; 31
1960; 120
1992; 46
2022; 32
2021; 41
2016; 45
2015; 13
2023; 10
2015; 5
2011; 1
2015; 3
2019; 5
2021; 420
2007; 90
2017; 29
2008; 320
2014; 43
2021; 13
2016; 3
2022; 6
2021; 215
2017; 10
2015; 112
2022; 9
2021; 218
2022; 13
2021; 371
2022; 15
2018; 11
2012; 5
2016; 9
2009; 105
2022; 18
References_xml – volume: 473
  start-page: 66
  year: 2011
  publication-title: Nature
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 13
  start-page: 237
  year: 2022
  publication-title: Nat. Commun.
– volume: 9
  start-page: 530
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 18
  year: 2022
  publication-title: Small
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 45
  start-page: 1927
  year: 2016
  publication-title: J. Electron. Mater.
– volume: 10
  start-page: 2638
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 43
  start-page: 2017
  year: 2014
  publication-title: J. Electron. Mater.
– volume: 6
  year: 2022
  publication-title: Small Methods
– volume: 10
  year: 2023
  publication-title: Adv. Sci.
– volume: 41
  start-page: 7703
  year: 2021
  publication-title: J. Eur. Ceram. Soc.
– volume: 1
  start-page: 291
  year: 2011
  publication-title: Adv. Energy Mater.
– volume: 3
  year: 2016
  publication-title: Adv. Sci.
– volume: 33
  year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 46
  start-page: 6131
  year: 1992
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
– volume: 215
  year: 2021
  publication-title: Acta Mater.
– volume: 11
  start-page: 1520
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 9
  start-page: 3120
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 5
  start-page: 5246
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 62
  start-page: 141
  year: 2014
  publication-title: J. M. Schoenung Acta Mater.
– volume: 3
  year: 2015
  publication-title: APL Mater.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 5
  year: 2019
  publication-title: Adv. Electron. Mater.
– volume: 367
  start-page: 1196
  year: 2020
  publication-title: Science
– volume: 23
  start-page: 4317
  year: 2013
  publication-title: Adv. Funct. Mater.
– volume: 112
  start-page: 8205
  year: 2015
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 15
  start-page: 2039
  year: 2022
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 4065
  year: 2023
  publication-title: ACS Appl. Energy Mater.
– volume: 12
  start-page: 624
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 375
  start-page: 1385
  year: 2022
  publication-title: Science
– volume: 13
  start-page: 2106
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 10
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 105
  year: 2009
  publication-title: J. Appl. Phys.
– volume: 320
  start-page: 634
  year: 2008
  publication-title: Science
– volume: 12
  start-page: 3106
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 218
  year: 2021
  publication-title: Acta Mater.
– volume: 13
  start-page: 6087
  year: 2022
  publication-title: Nat. Commun.
– volume: 90
  year: 2007
  publication-title: Appl. Phys. Lett.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 32
  year: 2023
  publication-title: Mater. Today Phys.
– volume: 33
  year: 2023
  publication-title: Mater. Today Phys.
– volume: 13
  start-page: 535
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 489
  start-page: 414
  year: 2012
  publication-title: Nature
– volume: 7
  start-page: 1856
  year: 2020
  publication-title: Natl. Sci. Rev.
– volume: 31
  start-page: 393
  year: 2017
  publication-title: Nano Energy
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 7
  start-page: 105
  year: 2008
  publication-title: Nat. Mater.
– volume: 371
  start-page: 6527
  year: 2021
  publication-title: Science
– volume: 9
  year: 2022
  publication-title: Adv. Sci.
– volume: 120
  start-page: 1149
  year: 1960
  publication-title: Phys. Rev.
– volume: 3
  start-page: 55
  year: 2018
  publication-title: npj Quantum Mater.
– volume: 21
  year: 2021
  publication-title: Mater. Today Energy
– volume: 1
  start-page: 577
  year: 2011
  publication-title: Adv. Energy Mater.
– volume: 145
  start-page: 8677
  year: 2023
  publication-title: J. Am. Chem. Soc.
– volume: 33
  start-page: 2443
  year: 1962
  publication-title: J. Appl. Phys.
– volume: 13
  start-page: 626
  year: 2015
  publication-title: Nano Energy
– volume: 114
  year: 2017
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 380
  start-page: 841
  year: 2023
  publication-title: Science
– volume: 10
  start-page: 799
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 107
  year: 2023
  publication-title: Phys. Rev. B
– volume: 420
  year: 2021
  publication-title: Chem. Eng. J.
SSID ssj0031247
Score 2.5154111
Snippet Bi2Te3‐based alloys are the benchmark for commercial thermoelectric (TE) materials, the widespread demand for low‐grade waste heat recovery and solid‐state...
Bi2Te3-based alloys are the benchmark for commercial thermoelectric (TE) materials, the widespread demand for low-grade waste heat recovery and solid-state...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage e2306701
SubjectTerms Ball milling
band engineering
Bi0.5Sb1.5Te3
Copper
high performance
microstructure modulation
Modules
Power factor
Synergistic effect
Thermal conductivity
Thermoelectric materials
thermoelectric module
Waste heat recovery
Title High Performance Thermoelectric Power of Bi0.5Sb1.5Te3 Through Synergistic Cu2GeSe3 and Se Incorporations
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202306701
https://www.proquest.com/docview/2973345750
https://search.proquest.com/docview/2889243388
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI5gJzjwRgwGChLXsj7SNT3CYIA00KQOiVuVrC6axNpppQf-PXbaddsVbqmSVJVrx3YSfx9jNypJCaQErFSDT1s3rhWGYmI5TorOYqKCMDUktlHw9iEfHgkmp6nir_Ahmg03sgyzXpOBK110V6ChxeyLjg4ohA5MARemCqaGwxstl2IPnZdhV0GfZRHw1hK10Xa7m9M34sv1KNW4mcH-_z_wgO3VISa_q3TikG1BdsR214AHj9mUrnfw0apogKO6LGZ5RYoznfARkafxPOX3U_vWj3Cl9cfg4SjD6sOjHyoZNBjPvF-6TxBhp8oSHgF_IWTMea1ZxQl7HzyO-89WTbpgfXoYDFhK-lImqRNAT4LG3FlA4mlbKUFA7FqFntR6YoPTU4FINMlYgQ2eBJEIgvM6Za0sz-CMcSVCjVNDn7JQUFqJwPXTMHCUdDU22qyzFHpcW04RE5eWhy_y7Ta7brpR5-kgQ2WQlzhGSkwbMbmWbeaaXxDPK2yOuEJhdmMSftwIP45eh8Pm6fwvky7YDrZFdf2sw1rfixIu2XaRlFdG534BkajWMg
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8JAEN4oHtSDbyOKuiZeK31s6faICEIshKSYeGt26dSQSCEgB_-9My0UuBpvbXe3aaazO4_d-T7GHlWcEEgJGIkGl1I3tuH7YmhYVoLGYqg8P8lIbEOv9yFfmgSTU1_VwuT4EEXCjWZGtl7TBKeEdHWNGjoff9HeAfnQHlVw7YkaaiNVcTj91WLsoPnK-FXQahkEvbXCbTTt6vb4LQ9z00_NDE3r-B8-8YQdLb1MXs_V4pTtQHrGDjewB8_ZiE548P66boCjxszGk5wXZzTkfeJP45OEP4_MJzfExdYdgIO9MmIfHv5Q1WAG88wbC_sVQmxUacxD4B0Cx5wulWt-wd5bzUGjbSx5F4xPB_0BQ0lXyjixPKhJ0Bg-C4gdbSolCItdK9-RWg9NsGrKE7EmISswwZEgYkGIXpeslE5SuGJcCV_jUN-lQBSUVsKz3cT3LCVtjRdlVllJPVpOnnlEdFoOvsg1y-yhaEa1p70MlcJkgX2kxMgR42tZZnb2D6JpDs8R5UDMdkTCjwrhR2E3CIq7678Mumf77UE3iIJO7-2GHeBzkZ9Gq7DS92wBt2x3Hi_uMgX8BTZT2lo
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT8IwEG8UE6MPfhtR1Jr4OtnWjnWPyocSkZAME9-Wlt0MiQwC8uB_790GA171bVvbZbnd9e7a3u_H2L2OEwIpASsx4NHSjWsFgRxYjpOgsxhoP0gyEtvQ736oRpNgcooq_hwfolhwI8vI5msy8EmcVFegobPRF20dUAjtUwHXjsRYnNDzhegt52KB3iujV0GnZRHy1hK20Xarm-M3Asz1MDXzM63D_3_hETtYxJj8MVeKY7YF6QnbX0MePGVDOt_Be6uqAY76Mh2Nc1ac4YD3iD2NjxP-NLQfvBCnWq8PAntltD48_KGawQzkmdfn7jOE2KjTmIfA2wSNOVmo1uyMvbea_fqLtWBdsD4FRgOWVp5SceL4UFNgMHmWEAtjay0Jid3oQChjBjY4Ne3L2JCMNdggFMhYEp7XOSul4xQuGNcyMDg08CgNBW209F0vCXxHK9fgRZlVlkKPFqYzi4hMS-CLPLvM7opmVHraydApjOfYRynMGzG7VmXmZr8gmuTgHFEOw-xGJPyoEH4UvnU6xd3lXwbdst1eoxV12t3XK7aHj2V-FK3CSt_TOVyz7Vk8v8nU7xejPNkA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+Performance+Thermoelectric+Power+of+Bi0.5Sb1.5Te3+Through+Synergistic+Cu2GeSe3+and+Se+Incorporations&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Pang%2C+Kaikai&rft.au=Yuan%2C+Minhui&rft.au=Zhang%2C+Qiang&rft.au=Li%2C+Yanan&rft.date=2024-03-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=20&rft.issue=12&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.202306701&rft.externalDBID=10.1002%252Fsmll.202306701&rft.externalDocID=SMLL202306701
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon