High Performance Thermoelectric Power of Bi0.5Sb1.5Te3 Through Synergistic Cu2GeSe3 and Se Incorporations
Bi2Te3‐based alloys are the benchmark for commercial thermoelectric (TE) materials, the widespread demand for low‐grade waste heat recovery and solid‐state refrigeration makes it imperative to enhance the figure‐of‐merits. In this study, high‐performance Bi0.5Sb1.5Te3 (BST) is realized by incorporat...
Saved in:
Published in: | Small (Weinheim an der Bergstrasse, Germany) Vol. 20; no. 12; pp. e2306701 - n/a |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Weinheim
Wiley Subscription Services, Inc
01-03-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Bi2Te3‐based alloys are the benchmark for commercial thermoelectric (TE) materials, the widespread demand for low‐grade waste heat recovery and solid‐state refrigeration makes it imperative to enhance the figure‐of‐merits. In this study, high‐performance Bi0.5Sb1.5Te3 (BST) is realized by incorporating Cu2GeSe3 and Se. Concretely, the diffusion of Cu and Ge atoms optimizes the hole concentration and raises the density‐of‐states effective mass (md*), compensating for the loss of “donor‐like effect” exacerbated by ball milling. The subsequent Se addition further increases md*, enabling a total 28% improvement of room‐temperature power factor (S2σ), reaching 43.6 µW cm−1 K−2 compared to the matrix. Simultaneously, the lattice thermal conductivity is also significantly suppressed by multiscale scattering sources represented by Cu‐rich nanoparticles and dislocation arrays. The synergistic effects yield a peak ZT of 1.41 at 350 K and an average ZT of 1.23 (300–500 K) in the Bi0.5Sb1.5Te2.94Se0.06 + 0.11 wt.% Cu2GeSe3 sample. More importantly, the integrated 17‐pair TE module achieves a conversion efficiency of 6.4%, 80% higher than the commercial one at ΔT = 200 K. These results validate that the facile composition optimization of the BST/Cu2GeSe3/Se is a promising strategy to improve the application of BST‐based TE modules.
The two‐step optimization strategy, which contributed to increased density‐of‐state effective mass and microstructural modulation with little loss of hole mobility, significantly promotes power factor, and suppresses thermal conductivity, yielding a peak ZT of 1.41 at 350 K and a high average ZT (300–500 K) of 1.23 in the Bi0.5Sb1.5Te2.94Se0.06+0.11 wt.% Cu2GeSe3 sample. Most impressively, by integrating the n‐type zone‐melted Bi2Te2.7Se0.3, the fabricated 17‐pair thermoelectric module demonstrate an overwhelming conversion efficiency of up to 6.4% at ΔT = 200 K. |
---|---|
AbstractList | Bi2Te3‐based alloys are the benchmark for commercial thermoelectric (TE) materials, the widespread demand for low‐grade waste heat recovery and solid‐state refrigeration makes it imperative to enhance the figure‐of‐merits. In this study, high‐performance Bi0.5Sb1.5Te3 (BST) is realized by incorporating Cu2GeSe3 and Se. Concretely, the diffusion of Cu and Ge atoms optimizes the hole concentration and raises the density‐of‐states effective mass (md*), compensating for the loss of “donor‐like effect” exacerbated by ball milling. The subsequent Se addition further increases md*, enabling a total 28% improvement of room‐temperature power factor (S2σ), reaching 43.6 µW cm−1 K−2 compared to the matrix. Simultaneously, the lattice thermal conductivity is also significantly suppressed by multiscale scattering sources represented by Cu‐rich nanoparticles and dislocation arrays. The synergistic effects yield a peak ZT of 1.41 at 350 K and an average ZT of 1.23 (300–500 K) in the Bi0.5Sb1.5Te2.94Se0.06 + 0.11 wt.% Cu2GeSe3 sample. More importantly, the integrated 17‐pair TE module achieves a conversion efficiency of 6.4%, 80% higher than the commercial one at ΔT = 200 K. These results validate that the facile composition optimization of the BST/Cu2GeSe3/Se is a promising strategy to improve the application of BST‐based TE modules. Bi2Te3-based alloys are the benchmark for commercial thermoelectric (TE) materials, the widespread demand for low-grade waste heat recovery and solid-state refrigeration makes it imperative to enhance the figure-of-merits. In this study, high-performance Bi0.5Sb1.5Te3 (BST) is realized by incorporating Cu2GeSe3 and Se. Concretely, the diffusion of Cu and Ge atoms optimizes the hole concentration and raises the density-of-states effective mass (md *), compensating for the loss of "donor-like effect" exacerbated by ball milling. The subsequent Se addition further increases md *, enabling a total 28% improvement of room-temperature power factor (S2σ), reaching 43.6 µW cm-1 K-2 compared to the matrix. Simultaneously, the lattice thermal conductivity is also significantly suppressed by multiscale scattering sources represented by Cu-rich nanoparticles and dislocation arrays. The synergistic effects yield a peak ZT of 1.41 at 350 K and an average ZT of 1.23 (300-500 K) in the Bi0.5Sb1.5Te2.94Se0.06 + 0.11 wt.% Cu2GeSe3 sample. More importantly, the integrated 17-pair TE module achieves a conversion efficiency of 6.4%, 80% higher than the commercial one at ΔT = 200 K. These results validate that the facile composition optimization of the BST/Cu2GeSe3/Se is a promising strategy to improve the application of BST-based TE modules. Bi2Te3‐based alloys are the benchmark for commercial thermoelectric (TE) materials, the widespread demand for low‐grade waste heat recovery and solid‐state refrigeration makes it imperative to enhance the figure‐of‐merits. In this study, high‐performance Bi0.5Sb1.5Te3 (BST) is realized by incorporating Cu2GeSe3 and Se. Concretely, the diffusion of Cu and Ge atoms optimizes the hole concentration and raises the density‐of‐states effective mass (md*), compensating for the loss of “donor‐like effect” exacerbated by ball milling. The subsequent Se addition further increases md*, enabling a total 28% improvement of room‐temperature power factor (S2σ), reaching 43.6 µW cm−1 K−2 compared to the matrix. Simultaneously, the lattice thermal conductivity is also significantly suppressed by multiscale scattering sources represented by Cu‐rich nanoparticles and dislocation arrays. The synergistic effects yield a peak ZT of 1.41 at 350 K and an average ZT of 1.23 (300–500 K) in the Bi0.5Sb1.5Te2.94Se0.06 + 0.11 wt.% Cu2GeSe3 sample. More importantly, the integrated 17‐pair TE module achieves a conversion efficiency of 6.4%, 80% higher than the commercial one at ΔT = 200 K. These results validate that the facile composition optimization of the BST/Cu2GeSe3/Se is a promising strategy to improve the application of BST‐based TE modules. The two‐step optimization strategy, which contributed to increased density‐of‐state effective mass and microstructural modulation with little loss of hole mobility, significantly promotes power factor, and suppresses thermal conductivity, yielding a peak ZT of 1.41 at 350 K and a high average ZT (300–500 K) of 1.23 in the Bi0.5Sb1.5Te2.94Se0.06+0.11 wt.% Cu2GeSe3 sample. Most impressively, by integrating the n‐type zone‐melted Bi2Te2.7Se0.3, the fabricated 17‐pair thermoelectric module demonstrate an overwhelming conversion efficiency of up to 6.4% at ΔT = 200 K. |
Author | Cui, Chen Zhou, Wenjie Liu, Guo‐Qiang Zhang, Qiang Tan, Xiaojian Sun, Peng Li, Yanan Hu, Haoyang Wu, Jiehua Yuan, Minhui Zhang, Yuyou Wu, Gang Noudem, Jacques G. Jiang, Jun Pang, Kaikai |
Author_xml | – sequence: 1 givenname: Kaikai surname: Pang fullname: Pang, Kaikai organization: Chinese Academy of Sciences – sequence: 2 givenname: Minhui surname: Yuan fullname: Yuan, Minhui organization: Shenzhen Campus of Sun Yat‐sen University – sequence: 3 givenname: Qiang surname: Zhang fullname: Zhang, Qiang email: qiangzhang@nimte.ac.cn organization: University of Chinese Academy of Sciences – sequence: 4 givenname: Yanan surname: Li fullname: Li, Yanan organization: Chinese Academy of Sciences – sequence: 5 givenname: Yuyou surname: Zhang fullname: Zhang, Yuyou organization: Chinese Academy of Sciences – sequence: 6 givenname: Wenjie surname: Zhou fullname: Zhou, Wenjie organization: Chinese Academy of Sciences – sequence: 7 givenname: Gang surname: Wu fullname: Wu, Gang organization: University of Chinese Academy of Sciences – sequence: 8 givenname: Xiaojian orcidid: 0000-0002-6949-9255 surname: Tan fullname: Tan, Xiaojian email: tanxiaojian@nimte.ac.cn organization: University of Chinese Academy of Sciences – sequence: 9 givenname: Jacques G. surname: Noudem fullname: Noudem, Jacques G. organization: Normandie University – sequence: 10 givenname: Chen surname: Cui fullname: Cui, Chen organization: Chinese Academy of Sciences – sequence: 11 givenname: Haoyang surname: Hu fullname: Hu, Haoyang organization: Chinese Academy of Sciences – sequence: 12 givenname: Jiehua surname: Wu fullname: Wu, Jiehua organization: University of Chinese Academy of Sciences – sequence: 13 givenname: Peng surname: Sun fullname: Sun, Peng organization: University of Chinese Academy of Sciences – sequence: 14 givenname: Guo‐Qiang surname: Liu fullname: Liu, Guo‐Qiang organization: University of Chinese Academy of Sciences – sequence: 15 givenname: Jun surname: Jiang fullname: Jiang, Jun email: jjun@nimte.ac.cn organization: University of Chinese Academy of Sciences |
BookMark | eNpdkM1vwjAMxaOJSQO2686VdtkF5iT9SI8b2gCp05DKzlHauhDUJiyhQvz3K2LisJNt-een5zciA2MNEvJIYUoB2Itvm2bKgHGIE6A3ZEhjyiexYOng2lO4IyPvdwCcsjAZEr3Qm22wQldb1ypTYrDeomstNlgenC6DlT2iC2wdvGmYRnlBp9EaeU852_WX-cmg22h_6NFZx-aY90tlqiDHYGlK6_bWqYO2xt-T21o1Hh_-6ph8f7yvZ4tJ9jVfzl6zyYYzoBMlIiGqmiYYCyziFEKseAFKhTyKRKFSLoqiBKSxSsKqOP-hEJALDKswSoCPyfNFd-_sT4f-IFvtS2waZdB2XjIhUhZyLkSPPv1Dd7ZzpncnWZpw3utFZ8H0Qh11gye5d7pV7iQpyHPs8hy7vMYu888su078Fz5leSM |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2024 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2024 Wiley‐VCH GmbH |
DBID | 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202306701 |
DatabaseName | Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | SMLL202306701 |
Genre | article |
GrantInformation_xml | – fundername: Zhejiang Provincial Key R&D Program funderid: 2021C01026 – fundername: National Natural Science Foundation of China funderid: U21A2079; 52002382 – fundername: International Cooperation Project of Ningbo City funderid: 2023H002 – fundername: Zhejiang Provincial Natural Science Foundation of China funderid: LR21E020002 – fundername: Ningbo Science & Technology Innovation 2025 Major Project funderid: 2022Z187 – fundername: Zhejiang Provincial High‐level Talent Special Support Plan funderid: 2020R52032 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAIHA AANLZ AAONW AAXRX AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 7SR 7U5 8BQ 8FD AAMNL JG9 L7M 7X8 |
ID | FETCH-LOGICAL-g3201-a8588df17e68eb6904ed3b0aa43558ba938bbc0e16a74db0312ae0e38e4d45703 |
IEDL.DBID | 33P |
ISSN | 1613-6810 |
IngestDate | Sat Aug 17 05:54:46 EDT 2024 Thu Nov 21 03:04:15 EST 2024 Sat Aug 24 01:05:53 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-g3201-a8588df17e68eb6904ed3b0aa43558ba938bbc0e16a74db0312ae0e38e4d45703 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-6949-9255 |
PQID | 2973345750 |
PQPubID | 1046358 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2889243388 proquest_journals_2973345750 wiley_primary_10_1002_smll_202306701_SMLL202306701 |
PublicationCentury | 2000 |
PublicationDate | 2024-03-01 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2022; 375 2023; 32 2023; 35 2023; 380 2021; 21 2023; 33 2023; 6 2013; 23 2019; 10 2023; 145 2019; 12 2008; 7 2020; 13 2020; 367 2020; 10 1962; 33 2023; 107 2012; 489 2014; 62 2017; 114 2011; 473 2020; 7 2017; 31 2018; 8 2018; 3 2021; 31 1960; 120 1992; 46 2022; 32 2021; 41 2016; 45 2015; 13 2023; 10 2015; 5 2011; 1 2015; 3 2019; 5 2021; 420 2007; 90 2017; 29 2008; 320 2014; 43 2021; 13 2016; 3 2022; 6 2021; 215 2017; 10 2015; 112 2022; 9 2021; 218 2022; 13 2021; 371 2022; 15 2018; 11 2012; 5 2016; 9 2009; 105 2022; 18 |
References_xml | – volume: 473 start-page: 66 year: 2011 publication-title: Nature – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 13 start-page: 237 year: 2022 publication-title: Nat. Commun. – volume: 9 start-page: 530 year: 2016 publication-title: Energy Environ. Sci. – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 18 year: 2022 publication-title: Small – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 45 start-page: 1927 year: 2016 publication-title: J. Electron. Mater. – volume: 10 start-page: 2638 year: 2017 publication-title: Energy Environ. Sci. – volume: 43 start-page: 2017 year: 2014 publication-title: J. Electron. Mater. – volume: 6 year: 2022 publication-title: Small Methods – volume: 10 year: 2023 publication-title: Adv. Sci. – volume: 41 start-page: 7703 year: 2021 publication-title: J. Eur. Ceram. Soc. – volume: 1 start-page: 291 year: 2011 publication-title: Adv. Energy Mater. – volume: 3 year: 2016 publication-title: Adv. Sci. – volume: 33 year: 2023 publication-title: Adv. Funct. Mater. – volume: 46 start-page: 6131 year: 1992 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. – volume: 215 year: 2021 publication-title: Acta Mater. – volume: 11 start-page: 1520 year: 2018 publication-title: Energy Environ. Sci. – volume: 9 start-page: 3120 year: 2016 publication-title: Energy Environ. Sci. – volume: 5 start-page: 5246 year: 2012 publication-title: Energy Environ. Sci. – volume: 62 start-page: 141 year: 2014 publication-title: J. M. Schoenung Acta Mater. – volume: 3 year: 2015 publication-title: APL Mater. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 5 year: 2019 publication-title: Adv. Electron. Mater. – volume: 367 start-page: 1196 year: 2020 publication-title: Science – volume: 23 start-page: 4317 year: 2013 publication-title: Adv. Funct. Mater. – volume: 112 start-page: 8205 year: 2015 publication-title: Proc. Natl. Acad. Sci. USA – volume: 15 start-page: 2039 year: 2022 publication-title: Energy Environ. Sci. – volume: 6 start-page: 4065 year: 2023 publication-title: ACS Appl. Energy Mater. – volume: 12 start-page: 624 year: 2019 publication-title: Energy Environ. Sci. – volume: 375 start-page: 1385 year: 2022 publication-title: Science – volume: 13 start-page: 2106 year: 2020 publication-title: Energy Environ. Sci. – volume: 10 year: 2019 publication-title: Adv. Energy Mater. – volume: 105 year: 2009 publication-title: J. Appl. Phys. – volume: 320 start-page: 634 year: 2008 publication-title: Science – volume: 12 start-page: 3106 year: 2019 publication-title: Energy Environ. Sci. – volume: 218 year: 2021 publication-title: Acta Mater. – volume: 13 start-page: 6087 year: 2022 publication-title: Nat. Commun. – volume: 90 year: 2007 publication-title: Appl. Phys. Lett. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 32 year: 2023 publication-title: Mater. Today Phys. – volume: 33 year: 2023 publication-title: Mater. Today Phys. – volume: 13 start-page: 535 year: 2020 publication-title: Energy Environ. Sci. – volume: 489 start-page: 414 year: 2012 publication-title: Nature – volume: 7 start-page: 1856 year: 2020 publication-title: Natl. Sci. Rev. – volume: 31 start-page: 393 year: 2017 publication-title: Nano Energy – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 7 start-page: 105 year: 2008 publication-title: Nat. Mater. – volume: 371 start-page: 6527 year: 2021 publication-title: Science – volume: 9 year: 2022 publication-title: Adv. Sci. – volume: 120 start-page: 1149 year: 1960 publication-title: Phys. Rev. – volume: 3 start-page: 55 year: 2018 publication-title: npj Quantum Mater. – volume: 21 year: 2021 publication-title: Mater. Today Energy – volume: 1 start-page: 577 year: 2011 publication-title: Adv. Energy Mater. – volume: 145 start-page: 8677 year: 2023 publication-title: J. Am. Chem. Soc. – volume: 33 start-page: 2443 year: 1962 publication-title: J. Appl. Phys. – volume: 13 start-page: 626 year: 2015 publication-title: Nano Energy – volume: 114 year: 2017 publication-title: Proc. Natl. Acad. Sci. USA – volume: 5 year: 2015 publication-title: Adv. Energy Mater. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 380 start-page: 841 year: 2023 publication-title: Science – volume: 10 start-page: 799 year: 2017 publication-title: Energy Environ. Sci. – volume: 107 year: 2023 publication-title: Phys. Rev. B – volume: 420 year: 2021 publication-title: Chem. Eng. J. |
SSID | ssj0031247 |
Score | 2.5154111 |
Snippet | Bi2Te3‐based alloys are the benchmark for commercial thermoelectric (TE) materials, the widespread demand for low‐grade waste heat recovery and solid‐state... Bi2Te3-based alloys are the benchmark for commercial thermoelectric (TE) materials, the widespread demand for low-grade waste heat recovery and solid-state... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
StartPage | e2306701 |
SubjectTerms | Ball milling band engineering Bi0.5Sb1.5Te3 Copper high performance microstructure modulation Modules Power factor Synergistic effect Thermal conductivity Thermoelectric materials thermoelectric module Waste heat recovery |
Title | High Performance Thermoelectric Power of Bi0.5Sb1.5Te3 Through Synergistic Cu2GeSe3 and Se Incorporations |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202306701 https://www.proquest.com/docview/2973345750 https://search.proquest.com/docview/2889243388 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI5gJzjwRgwGChLXsj7SNT3CYIA00KQOiVuVrC6axNpppQf-PXbaddsVbqmSVJVrx3YSfx9jNypJCaQErFSDT1s3rhWGYmI5TorOYqKCMDUktlHw9iEfHgkmp6nir_Ahmg03sgyzXpOBK110V6ChxeyLjg4ohA5MARemCqaGwxstl2IPnZdhV0GfZRHw1hK10Xa7m9M34sv1KNW4mcH-_z_wgO3VISa_q3TikG1BdsR214AHj9mUrnfw0apogKO6LGZ5RYoznfARkafxPOX3U_vWj3Cl9cfg4SjD6sOjHyoZNBjPvF-6TxBhp8oSHgF_IWTMea1ZxQl7HzyO-89WTbpgfXoYDFhK-lImqRNAT4LG3FlA4mlbKUFA7FqFntR6YoPTU4FINMlYgQ2eBJEIgvM6Za0sz-CMcSVCjVNDn7JQUFqJwPXTMHCUdDU22qyzFHpcW04RE5eWhy_y7Ta7brpR5-kgQ2WQlzhGSkwbMbmWbeaaXxDPK2yOuEJhdmMSftwIP45eh8Pm6fwvky7YDrZFdf2sw1rfixIu2XaRlFdG534BkajWMg |
link.rule.ids | 315,782,786,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8JAEN4oHtSDbyOKuiZeK31s6faICEIshKSYeGt26dSQSCEgB_-9My0UuBpvbXe3aaazO4_d-T7GHlWcEEgJGIkGl1I3tuH7YmhYVoLGYqg8P8lIbEOv9yFfmgSTU1_VwuT4EEXCjWZGtl7TBKeEdHWNGjoff9HeAfnQHlVw7YkaaiNVcTj91WLsoPnK-FXQahkEvbXCbTTt6vb4LQ9z00_NDE3r-B8-8YQdLb1MXs_V4pTtQHrGDjewB8_ZiE548P66boCjxszGk5wXZzTkfeJP45OEP4_MJzfExdYdgIO9MmIfHv5Q1WAG88wbC_sVQmxUacxD4B0Cx5wulWt-wd5bzUGjbSx5F4xPB_0BQ0lXyjixPKhJ0Bg-C4gdbSolCItdK9-RWg9NsGrKE7EmISswwZEgYkGIXpeslE5SuGJcCV_jUN-lQBSUVsKz3cT3LCVtjRdlVllJPVpOnnlEdFoOvsg1y-yhaEa1p70MlcJkgX2kxMgR42tZZnb2D6JpDs8R5UDMdkTCjwrhR2E3CIq7678Mumf77UE3iIJO7-2GHeBzkZ9Gq7DS92wBt2x3Hi_uMgX8BTZT2lo |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT8IwEG8UE6MPfhtR1Jr4OtnWjnWPyocSkZAME9-Wlt0MiQwC8uB_790GA171bVvbZbnd9e7a3u_H2L2OEwIpASsx4NHSjWsFgRxYjpOgsxhoP0gyEtvQ736oRpNgcooq_hwfolhwI8vI5msy8EmcVFegobPRF20dUAjtUwHXjsRYnNDzhegt52KB3iujV0GnZRHy1hK20Xarm-M3Asz1MDXzM63D_3_hETtYxJj8MVeKY7YF6QnbX0MePGVDOt_Be6uqAY76Mh2Nc1ac4YD3iD2NjxP-NLQfvBCnWq8PAntltD48_KGawQzkmdfn7jOE2KjTmIfA2wSNOVmo1uyMvbea_fqLtWBdsD4FRgOWVp5SceL4UFNgMHmWEAtjay0Jid3oQChjBjY4Ne3L2JCMNdggFMhYEp7XOSul4xQuGNcyMDg08CgNBW209F0vCXxHK9fgRZlVlkKPFqYzi4hMS-CLPLvM7opmVHraydApjOfYRynMGzG7VmXmZr8gmuTgHFEOw-xGJPyoEH4UvnU6xd3lXwbdst1eoxV12t3XK7aHj2V-FK3CSt_TOVyz7Vk8v8nU7xejPNkA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+Performance+Thermoelectric+Power+of+Bi0.5Sb1.5Te3+Through+Synergistic+Cu2GeSe3+and+Se+Incorporations&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Pang%2C+Kaikai&rft.au=Yuan%2C+Minhui&rft.au=Zhang%2C+Qiang&rft.au=Li%2C+Yanan&rft.date=2024-03-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=20&rft.issue=12&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.202306701&rft.externalDBID=10.1002%252Fsmll.202306701&rft.externalDocID=SMLL202306701 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |