Surface plasmon resonance excited electron induction greatly extends H2 evolution and pollutant degradation activity of g‐C3N4 under visible light irradiation

Energy crises and environmental pollution have sparked tremendous research work to handle their impacts. Herein, we fabricated Au/g‐C3N4 nanocomposites to produce H2 and degrade 2,4‐dichlorophenol (2,4‐DCP) under visible light and at different wavelengths. Interestingly, the optimized photocatalyst...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Chinese Chemical Society (Taipei) Vol. 67; no. 6; pp. 983 - 989
Main Authors: Zada, Amir, Ali, Nauman, Ateeq, Muhammad, Huerta‐Flores, Ali M., Hussain, Zahid, Shaheen, Shabana, Ullah, Mohib, Ali, Sharafat, Khan, Imran, Ali, Wajid, Shah, Muhammad Ishaq Ali, Khan, Waliullah
Format: Journal Article
Language:English
Published: Weinheim Wiley‐VCH Verlag GmbH & Co. KGaA 01-06-2020
Wiley Subscription Services, Inc
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Energy crises and environmental pollution have sparked tremendous research work to handle their impacts. Herein, we fabricated Au/g‐C3N4 nanocomposites to produce H2 and degrade 2,4‐dichlorophenol (2,4‐DCP) under visible light and at different wavelengths. Interestingly, the optimized photocatalyst generated 114 μmol H2 and degraded 25% 2,4‐DCP in 1 hr as compared with 10 μmol H2 generation and 8% 2,4‐DCP degradation by pure g‐C3N4. This improvement is credited to the extended light absorption and improved charge induction from gold to g‐C3N4 even at 590 nm as confirmed from photoluminescence, surface photovoltage, and photoelectrochemical study of the samples. Moreover, the surface catalytic property of g‐C3N4 was much improved after loading a proper amount of gold nanoparticles. We hope that this technique to photosensitize semiconductors with noble metal nanoparticles may provide a feasible way to construct surface plasmon resonance‐assisted photocatalysts to cope with energy crises and environmental pollution simultaneously. Au‐loaded g‐C3N4 nanosheets were prepared which showed enhanced photocatalytic activities for the degradation of pollutant and H2 evolution under visible light. These enhanced activities are attributed to the extended visible light absorption, improved charge separation, and surface catalysis.
AbstractList Energy crises and environmental pollution have sparked tremendous research work to handle their impacts. Herein, we fabricated Au/g‐C3N4 nanocomposites to produce H2 and degrade 2,4‐dichlorophenol (2,4‐DCP) under visible light and at different wavelengths. Interestingly, the optimized photocatalyst generated 114 μmol H2 and degraded 25% 2,4‐DCP in 1 hr as compared with 10 μmol H2 generation and 8% 2,4‐DCP degradation by pure g‐C3N4. This improvement is credited to the extended light absorption and improved charge induction from gold to g‐C3N4 even at 590 nm as confirmed from photoluminescence, surface photovoltage, and photoelectrochemical study of the samples. Moreover, the surface catalytic property of g‐C3N4 was much improved after loading a proper amount of gold nanoparticles. We hope that this technique to photosensitize semiconductors with noble metal nanoparticles may provide a feasible way to construct surface plasmon resonance‐assisted photocatalysts to cope with energy crises and environmental pollution simultaneously.
Energy crises and environmental pollution have sparked tremendous research work to handle their impacts. Herein, we fabricated Au/g‐C3N4 nanocomposites to produce H2 and degrade 2,4‐dichlorophenol (2,4‐DCP) under visible light and at different wavelengths. Interestingly, the optimized photocatalyst generated 114 μmol H2 and degraded 25% 2,4‐DCP in 1 hr as compared with 10 μmol H2 generation and 8% 2,4‐DCP degradation by pure g‐C3N4. This improvement is credited to the extended light absorption and improved charge induction from gold to g‐C3N4 even at 590 nm as confirmed from photoluminescence, surface photovoltage, and photoelectrochemical study of the samples. Moreover, the surface catalytic property of g‐C3N4 was much improved after loading a proper amount of gold nanoparticles. We hope that this technique to photosensitize semiconductors with noble metal nanoparticles may provide a feasible way to construct surface plasmon resonance‐assisted photocatalysts to cope with energy crises and environmental pollution simultaneously. Au‐loaded g‐C3N4 nanosheets were prepared which showed enhanced photocatalytic activities for the degradation of pollutant and H2 evolution under visible light. These enhanced activities are attributed to the extended visible light absorption, improved charge separation, and surface catalysis.
Author Zada, Amir
Shaheen, Shabana
Ali, Sharafat
Ateeq, Muhammad
Huerta‐Flores, Ali M.
Ullah, Mohib
Khan, Imran
Khan, Waliullah
Shah, Muhammad Ishaq Ali
Ali, Nauman
Hussain, Zahid
Ali, Wajid
Author_xml – sequence: 1
  givenname: Amir
  orcidid: 0000-0003-3670-4408
  surname: Zada
  fullname: Zada, Amir
  email: amistry009@yahoo.com
  organization: International Joint Research Center for Catalytic Technology
– sequence: 2
  givenname: Nauman
  surname: Ali
  fullname: Ali, Nauman
  organization: University of Peshawar
– sequence: 3
  givenname: Muhammad
  surname: Ateeq
  fullname: Ateeq, Muhammad
  organization: Abdul Wali Khan University
– sequence: 4
  givenname: Ali M.
  surname: Huerta‐Flores
  fullname: Huerta‐Flores, Ali M.
  email: ali.huertaflr@uanl.edu.mx
  organization: Universidad Autónoma de Nuevo León (UANL)
– sequence: 5
  givenname: Zahid
  surname: Hussain
  fullname: Hussain, Zahid
  organization: Abdul Wali Khan University
– sequence: 6
  givenname: Shabana
  surname: Shaheen
  fullname: Shaheen, Shabana
  organization: International Joint Research Center for Catalytic Technology
– sequence: 7
  givenname: Mohib
  surname: Ullah
  fullname: Ullah, Mohib
  organization: International Joint Research Center for Catalytic Technology
– sequence: 8
  givenname: Sharafat
  surname: Ali
  fullname: Ali, Sharafat
  organization: International Joint Research Center for Catalytic Technology
– sequence: 9
  givenname: Imran
  surname: Khan
  fullname: Khan, Imran
  organization: International Joint Research Center for Catalytic Technology
– sequence: 10
  givenname: Wajid
  surname: Ali
  fullname: Ali, Wajid
  organization: International Joint Research Center for Catalytic Technology
– sequence: 11
  givenname: Muhammad Ishaq Ali
  surname: Shah
  fullname: Shah, Muhammad Ishaq Ali
  organization: Abdul Wali Khan University
– sequence: 12
  givenname: Waliullah
  surname: Khan
  fullname: Khan, Waliullah
  organization: Abdul Wali Khan University
BookMark eNo9UU1P3DAQtapF6rLlytlSz1n8FSc-oghK0ao9UM6RE0-CV8bZ2s62e-tP4Cf0t_FLMCziYI1n3nszmnmnaOEnDwidU7KmhLCLbd_HNSNUEcJV_QktGVWskKVQC7QkhKhClFx-RqcxbgkRnJVqif7fzWHQPeCd0_Fx8jhAnLz2uQJ_e5vAYHDQp5Ah683cJ5t_YwCd3CFTEngT8Q3DsJ_c_AZqb_BucjnTPmEDY9BGH5Gs3tt0wNOAx-d_Tw3_IfDsDQS8t9F2DrCz40PCNmSNfRN9QSeDdhHO3uMK3V9f_Wpuis3Pb9-by00xspLWBZcDo7TMG2rJjRCip0TXhMqq65RRVTewweQnqlJ0-VqmriuoBkOkLEltJF-hr8e-uzD9niGmdjvNweeRLRNUSCq5EJmljqw_1sGh3QX7qMOhpaR9taB9taD9sKC9bZq7j4y_ANfrgqQ
ContentType Journal Article
Copyright 2019 The Chemical Society Located in Taipei & Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 The Chemical Society Located in Taipei & Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 The Chemical Society Located in Taipei & Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 The Chemical Society Located in Taipei & Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
DOI 10.1002/jccs.201900398
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2192-6549
EndPage 989
ExternalDocumentID JCCS201900398
Genre article
GroupedDBID 05W
0R~
1OB
1OC
2NJ
2WC
31~
33P
3SF
50Y
52U
5GY
8-0
8-1
8RM
A00
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABDBF
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AHBTC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
BZXJU
DCZOG
DPXWK
DRFUL
DRSTM
E3Z
EBS
EJD
EOJEC
FEDTE
G-S
GODZA
HGLYW
HH5
HVGLF
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OBODZ
OK1
P2P
P2W
PALCI
Q0C
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TR2
VH1
WBFHL
WBKPD
WIH
WIK
WOHZO
WXSBR
WYISQ
WYJ
ZZTAW
ID FETCH-LOGICAL-g2518-36f2115453a63d444c10a80167bb9d97bf2fdf2f4754b002d887e7fd066508d63
IEDL.DBID 33P
ISSN 0009-4536
IngestDate Thu Oct 10 19:24:49 EDT 2024
Sat Aug 24 01:06:46 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-g2518-36f2115453a63d444c10a80167bb9d97bf2fdf2f4754b002d887e7fd066508d63
ORCID 0000-0003-3670-4408
PQID 2414616344
PQPubID 2032544
PageCount 7
ParticipantIDs proquest_journals_2414616344
wiley_primary_10_1002_jccs_201900398_JCCS201900398
PublicationCentury 2000
PublicationDate June 2020
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: June 2020
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Taipei
PublicationTitle Journal of the Chinese Chemical Society (Taipei)
PublicationYear 2020
Publisher Wiley‐VCH Verlag GmbH & Co. KGaA
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley‐VCH Verlag GmbH & Co. KGaA
– name: Wiley Subscription Services, Inc
References 2019; 7
2017; 7
2018; 364
2018; 342
2018; 221
2019; 3
2018; 183
2015; 70
2019; 99
2018; 344
2019; 15
2013; 42
2019; 226
2019; 102
2020; 15
2019; 246
2019; 466
2020; 145
2015; 8
2019; 380
2016; 120
2019; 244
2018; 111
2016; 6
2018; 2
2019; 66
2017; 38
2019; 48
2018; 213
2019; 335
2019
2016; 84
2019; 29
2020; 46
2020; 67
2017; 201
2018; 10
2019; 194
2019; 210
2019; 375
2016; 153
2019; 230
2019; 374
References_xml – volume: 84
  start-page: 99
  year: 2016
  publication-title: Mater. Res. Bull.
– volume: 374
  start-page: 22
  year: 2019
  publication-title: J. Photochem. Photobiol. A
– volume: 226
  start-page: 128
  year: 2019
  publication-title: Sep. Purif. Technol.
– year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 375
  start-page: 191
  year: 2019
  publication-title: J. Photochem. Photobiol. A: Chem
– volume: 42
  start-page: 8467
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 120
  start-page: 98
  year: 2016
  publication-title: J. Phys. Chem. C
– volume: 111
  start-page: 832
  year: 2018
  publication-title: Int. J. Biol. Macromol.
– volume: 7
  start-page: 3017
  year: 2017
  publication-title: Catal. Sci. Technol.
– volume: 8
  start-page: 2043
  year: 2015
  publication-title: Materials
– volume: 466
  start-page: 847
  year: 2019
  publication-title: Appl. Surf. Sci.
– volume: 221
  start-page: 459
  year: 2018
  publication-title: Appl. Catal. B: Environ.
– volume: 46
  start-page: 1494
  year: 2020
  publication-title: Ceram. Int.
– volume: 2
  start-page: 549
  year: 2018
  publication-title: Sustainable Energy Fuels
– volume: 246
  start-page: 61
  year: 2019
  publication-title: Appl. Catal. B: Environ.
– volume: 210
  start-page: 804
  year: 2019
  publication-title: Sep. Purif. Technol.
– volume: 99
  start-page: 258
  year: 2019
  publication-title: J. Taiwan. Inst. Chem. Eng.
– volume: 70
  start-page: 494
  year: 2015
  publication-title: Mater. Res. Bull.
– volume: 29
  start-page: 138
  year: 2019
  publication-title: Progr. Nat. Sci. Mater. Int
– volume: 66
  start-page: 945
  year: 2019
  publication-title: J. Chin. Chem. Soc.
– volume: 67
  start-page: 277
  issue: 2
  year: 2020
  end-page: 287
  publication-title: J. Chin. Chem. Soc.
– volume: 7
  start-page: 103
  year: 2019
  publication-title: J. Environ. Chem. Eng.
– volume: 48
  start-page: 1908
  year: 2019
  publication-title: Chem. Soc. Rev.
– volume: 213
  start-page: 259
  year: 2018
  publication-title: Mater. Chem. Phys.
– volume: 66
  start-page: 402
  year: 2019
  publication-title: J. Chin. Chem. Soc.
– volume: 244
  start-page: 96
  year: 2019
  publication-title: Appl. Catal. B: Environ.
– volume: 10
  start-page: 2679
  year: 2018
  publication-title: Nanoscale
– volume: 344
  start-page: 758
  year: 2018
  publication-title: J. Hazard. Mater.
– volume: 38
  start-page: 1072
  year: 2017
  publication-title: Chin. J. Catal.
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 183
  start-page: 193
  year: 2018
  publication-title: Energy Mater. Sol. Cells
– volume: 194
  start-page: 195
  year: 2019
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 145
  start-page: 691
  year: 2020
  publication-title: Renew. Energy
– volume: 102
  year: 2019
  publication-title: Mater. Sci. Semicond. Process.
– volume: 15
  start-page: 30
  year: 2020
  publication-title: Soil Water Res.
– volume: 201
  start-page: 486
  year: 2017
  publication-title: Appl. Catal. B: Environ.
– volume: 364
  start-page: 826
  year: 2018
  publication-title: J. Photochem. Photobiol. A: Chem.
– volume: 153
  start-page: 374
  year: 2016
  publication-title: Spectrochim. Acta Mol. Biomol. Spectrosc.
– volume: 3
  start-page: 3363
  year: 2019
  publication-title: Sustainable Energy Fuels
– volume: 15
  start-page: 494
  year: 2019
  publication-title: Appl. Mater. Today
– volume: 230
  start-page: 383
  year: 2019
  publication-title: J. Clean. Prod.
– year: 2019
  publication-title: J. Chin. Chem. Soc.
– volume: 335
  start-page: 557
  year: 2019
  publication-title: Catal. Today
– volume: 380
  year: 2019
  publication-title: J. Photochem. Photobiol. A: Chem.
– volume: 342
  start-page: 715
  year: 2018
  publication-title: J. Hazard. Mater.
SSID ssj0043259
Score 2.4318435
Snippet Energy crises and environmental pollution have sparked tremendous research work to handle their impacts. Herein, we fabricated Au/g‐C3N4 nanocomposites to...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage 983
SubjectTerms 2,4‐DCP degradation
Carbon nitride
charge separation
Degradation
Electromagnetic absorption
Gold
Hydrogen evolution
Hydrogen production
hydroxyl radicals
Light irradiation
Nanocomposites
Nanoparticles
Noble metals
Photocatalysts
Photoluminescence
Pollutants
SPR‐excited electrons
Surface plasmon resonance
Title Surface plasmon resonance excited electron induction greatly extends H2 evolution and pollutant degradation activity of g‐C3N4 under visible light irradiation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjccs.201900398
https://www.proquest.com/docview/2414616344
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELWgCyx8IwoF3cAaNYldJx5RaFUxVEgFiS2yY6cCVWmVUAQbP4GfwG_jl-DLF3SFIUMGW5Huznl31nuPkEvue8pw2-RgM-CwgWscpJQ4aSI9aSg3vBRJGk-DyUN4PUSZnJbFX-lDtAM3rIzyvMYCl6ro_4iGPiUJym17OIoTyPZF6SbkcNDb5ihm1B-I1kqtvKc8rjfory9fw5e_UWr5mxnt_v8D98hODTHhqsqJfbJhsgOyFTXObofkc7rKU5kYWFrobNMQbMu9QOENA-Y1QQwKjTsO2Ja90peFGcLL-RtUY_MCxj6YlzpxQWYaluiajKbEoFGBojJrAiROoD8FLFKYfb1_RHTCAJlrOSCvXc0NzHFAAI95jjoJuOiI3I-Gd9HYqZ0anJnFR6FDeeqjrs-ASk41YyzxXBkiw0EpoUWgUj_V9mHBgCEs0PZoM0Gq8d7HDTWnx6STLTJzQkDQ1PZUiVLMCCaopywAlUK7SqKsTCi7pNdEKq7LrYgtDGHcIkvGusQvYxIvK7GOuJJl9mOMRtxGI76Jomn7dvqXRWdk28feu5zI9EjnOV-Zc7JZ6NVFmYTfGPTgRQ
link.rule.ids 315,783,787,1409,27936,27937,46067,46491
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV29TsMwELYoDLDwX1EocANrRBK7Tjyi0KpAqZAKEltkx04FqtoqpQg2HoFH4Nl4Enz5KbAihgwZzop0P_nurPs-Qk647ynDbZODzYDDWq5xcKXESRPpSUO54TlJUncQ9O_D8zbS5JxVuzAFP8Ri4IaZkddrTHAcSJ9-s4Y-JgnybXs4ixNhjawwzgTmJqU3VTFm1G-JhZhaflNZL084_W3_C2H-xKn5j6az8Q-fuEnWS5QJZ0VYbJElM94mq1El7rZDPgbzLJWJgalFzzYSwXbdE-TeMGBeEoShUAnkgO3aC4pZGCLCHL1CMTmfQdcH81zGLsixhikKJ6MuMWgkoSj0mgB3J1CiAiYpDD_f3iPaZ4DLaxngarsaGRjhjAAesgypEtBol9x12rdR1ynFGpyhhUihQ3nqI7VPi0pONWMs8VwZ4pKDUkKLQKV-qu3DghZDZKBtdTNBqvHqxw01p3WyPJ6MzR4BQVPbViVKMSOYoJ6yGFQK7SqJzDKhbJBm5aq4zLhZbJEI4xZcMtYgfu6UeFrwdcQFM7MfozfihTfiyygaLN72_2J0TFa7t9e9uHfRvzogaz624vmApkmWn7K5OSS1mZ4f5RH5BTia5GY
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3JTsMwEIYtWiTgwl5RKDAHrlGb2M1yRGmrsqiqVJC4RXZsV6CqrVKK4MYj8Ag8G0-CJxv0CocccnAUacbOPxPN9xNy4Tq2UK4pcrAYsFi7pSwcKbF0zG2uqKvcFJLUH3mDB7_TRUxOOcWf8SHKhhvujPS8xg0-l7r5Aw19imPEbdvYigv8CllnRotj-UXpsDiLGXXaQemllv6orOVPaK6uXxGYv2Vq-p3p7fz_DXfJdq4x4TJLij2ypqb7ZDMsrN0OyOdomWgeK5gb7WzyEEzNPUPyhgL1GqMIhcIeB0zNngFmYYz6cvIGWd98AX0H1EueucCnEuZom4yuxCARQZG5NQFOTqBBBcw0jL_eP0I6YICjawngYLuYKJhghwAekwRBCbjokNz3undh38qtGqyxEUi-RV3tINinTblLJWMstlvcxxEHIQIZeEI7WpqLeW2GukCas015WuKPn5YvXVoj1elsqo4IBFSbQMZCMBWwgNrCKFAeyJbgyJXxeZ00ikhF-X5bREaHMNdIS8bqxEljEs0zWkeUcZmdCKMRldGIrsNwVN4d_2XROdkYdnrR7dXg5oRsOViHp92ZBqk-J0t1SioLuTxL8_EbooPjFQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface+plasmon+resonance+excited+electron+induction+greatly+extends+H2+evolution+and+pollutant+degradation+activity+of+g%E2%80%90C3N4+under+visible+light+irradiation&rft.jtitle=Journal+of+the+Chinese+Chemical+Society+%28Taipei%29&rft.au=Zada%2C+Amir&rft.au=Ali%2C+Nauman&rft.au=Ateeq%2C+Muhammad&rft.au=Huerta%E2%80%90Flores%2C+Ali+M.&rft.date=2020-06-01&rft.pub=Wiley%E2%80%90VCH+Verlag+GmbH+%26+Co.+KGaA&rft.issn=0009-4536&rft.eissn=2192-6549&rft.volume=67&rft.issue=6&rft.spage=983&rft.epage=989&rft_id=info:doi/10.1002%2Fjccs.201900398&rft.externalDBID=10.1002%252Fjccs.201900398&rft.externalDocID=JCCS201900398
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-4536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-4536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-4536&client=summon