Kinetics and performance of a co-immobilised system of amyloglucosidase and Zymomonas mobilis
High operational stability and productivity of co-immobilised systems are important aspects for their successful application in industrial processes. A dynamic model is required to describe artificially co-immobilised systems because the time needed to reach steady state normally exceeds the operati...
Saved in:
Published in: | Biotechnology and bioengineering Vol. 63; no. 6; pp. 694 - 704 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
New York
John Wiley & Sons, Inc
20-06-1999
Wiley |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | High operational stability and productivity of co-immobilised systems are important aspects for their successful application in industrial processes. A dynamic model is required to describe artificially co-immobilised systems because the time needed to reach steady state normally exceeds the operational life span of these systems. Time dependent intraparticle concentration profiles and macroscopic conversion were modelled to study the operational stability and productivity of these systems theoretically. The model was used to describe experimental results of ethanol production from maltose by a co-immobilised system of amyloglucosidase and Zymomonas mobilis. Furthermore, the influence of the immobilisation procedure with glutaraldehyde and polyethyleneimine could also be studied with and incorporated in the model. From the model it could be derived that co-immobilised systems performing a consecutive reaction evolve towards a steady state, characterised by a constant concentration of the intermediate in the particle if product inhibition is neglected. Such a situation develops independently of the biomass concentration and the radial position, and has important consequences for co-immobilised systems. When the concentration of the intermediate in the bulk liquid is lower than this constant value in the biocatalyst particle, two regions may be distinguished in the particle: an inactive peripheral region without biomass and an active core with a biomass concentration depending on the substrate and immobilised enzyme concentration. Unlike immobilised single cell systems, it is possible to obtain a real steady state and therefore a stable situation for co-immobilised systems. However, a high operational life time could only be achieved at the expense of the productivity of the biocatalyst particle. A stability criterion is derived which agrees very well with the simulation results. |
---|---|
AbstractList | Time dependent intraparticle concentration profiles and macroscopic conversion were modeled to study the operational stability and productivity of co-immobilized systems. In particular, the model was used to describe experimental results of ethanol production from maltose by a co-immobilized system of amyloglucosidase and Zymomonas mobilis. The influence of the immobilization procedure with glutaraldehyde and polyethyleneimine was also examined with and incorporated in the model. From the model, it was found that co-immobilized systems performing a consecutive reaction evolve towards a steady state. High operational stability and productivity of co-immobilised systems are important aspects for their successful application in industrial processes. A dynamic model is required to describe artificially co-immobilised systems because the time needed to reach steady state normally exceeds the operational life span of these systems. Time dependent intraparticle concentration profiles and macroscopic conversion were modelled to study the operational stability and productivity of these systems theoretically. The model was used to describe experimental results of ethanol production from maltose by a co-immobilised system of amyloglucosidase and Zymomonas mobilis. Furthermore, the influence of the immobilisation procedure with glutaraldehyde and polyethyleneimine could also be studied with and incorporated in the model. From the model it could be derived that co-immobilised systems performing a consecutive reaction evolve towards a steady state, characterised by a constant concentration of the intermediate in the particle if product inhibition is neglected. Such a situation develops independently of the biomass concentration and the radial position, and has important consequences for co-immobilised systems. When the concentration of the intermediate in the bulk liquid is lower than this constant value in the biocatalyst particle, two regions may be distinguished in the particle: an inactive peripheral region without biomass and an active core with a biomass concentration depending on the substrate and immobilised enzyme concentration. Unlike immobilised single cell systems, it is possible to obtain a real steady state and therefore a stable situation for co-immobilised systems. However, a high operational life time could only be achieved at the expense of the productivity of the biocatalyst particle. A stability criterion is derived which agrees very well with the simulation results. High operational stability and productivity of co‐immobilised systems are important aspects for their successful application in industrial processes. A dynamic model is required to describe artificially co‐immobilised systems because the time needed to reach steady state normally exceeds the operational life span of these systems. Time dependent intraparticle concentration profiles and macroscopic conversion were modelled to study the operational stability and productivity of these systems theoretically. The model was used to describe experimental results of ethanol production from maltose by a co‐immobilised system of amyloglucosidase and Zymomonas mobilis. Furthermore, the influence of the immobilisation procedure with glutaraldehyde and polyethyleneimine could also be studied with and incorporated in the model. From the model it could be derived that co‐immobilised systems performing a consecutive reaction evolve towards a steady state, characterised by a constant concentration of the intermediate in the particle if product inhibition is neglected. Such a situation develops independently of the biomass concentration and the radial position, and has important consequences for co‐immobilised systems. When the concentration of the intermediate in the bulk liquid is lower than this constant value in the biocatalyst particle, two regions may be distinguished in the particle: an inactive peripheral region without biomass and an active core with a biomass concentration depending on the substrate and immobilised enzyme concentration. Unlike immobilised single cell systems, it is possible to obtain a real steady state and therefore a stable situation for co‐immobilised systems. However, a high operational life time could only be achieved at the expense of the productivity of the biocatalyst particle. A stability criterion is derived which agrees very well with the simulation results. © 1999 John Wiley & Sons, Inc. Biotechnol Bioeng 63: 694–704, 1999. |
Author | dos Santos, V. A. P. M. Ottengraf, S. P. P. Pennings, J. A. M. M. Hellendoorn, L. Wijffels, R. H. van den Heuvel, J. C. |
Author_xml | – sequence: 1 fullname: Hellendoorn, L – sequence: 2 fullname: Ottengraf, S.P.P – sequence: 3 fullname: Heuvel, J.C. van den – sequence: 4 fullname: Pennings, J.A.M.M – sequence: 5 fullname: Santos, V.A.P.M. dos – sequence: 6 fullname: Wijiffels, R.H |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1801967$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/10397826$$D View this record in MEDLINE/PubMed |
BookMark | eNqFktluEzEUhi1URNPCK8BcINReTPAy3gKqVAKUiLSR6IKEhI4cj6cyzIzDOBHM2-MsLdz1yjryd_6z_Qdorw2tQ-iE4CHBmL4-upyMJ8cEa5ljqvER0VpjQfGxYCPxVuhiNDqdvM_fTa7kCRvi4Xj2hubnj9DgPmUPDTDGImdc0310EOOPFEolxBO0TzDTUlExQN8_-9YtvY2Zacts4boqdI1prctClZnMhtw3TZj72kdXZrGPS9dsvpq-Drf1yoboSxPdJv1b34QmtCZmu5Sn6HFl6uie7d5DdP3xw9X4Uz6dnU3Gp9O8KlIjuRScWWm404YWFheW2NJIbSqGOa1UZblWBbdScT03VRqeUVVSM6fU8IIxyg7Rq63uogu_Vi4uofHRuro2rQurCEIrlbZXPAhSwnRBlXoQJJJqQpRI4PMduJo3roRF5xvT9XC34gS83AEmWlNXXdquj_84hYkWMmE3W-y3r13_nwys_QBrO8D6trC-LdzZAQQDkcYrILkB1m4ABhjGM6BwvomTcL4V9ul2f-6FTfcTUlnJ4evFGfAvCk8vyBRuEv9iy1cmgLntUq_XlxQTlgozgjljfwGKccX5 |
CODEN | BIBIAU |
ContentType | Journal Article |
Copyright | Copyright © 1999 John Wiley & Sons, Inc. 1999 INIST-CNRS Copyright 1999 John Wiley & Sons, Inc. |
Copyright_xml | – notice: Copyright © 1999 John Wiley & Sons, Inc. – notice: 1999 INIST-CNRS – notice: Copyright 1999 John Wiley & Sons, Inc. |
DBID | FBQ BSCLL IQODW CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 P64 7X8 |
DOI | 10.1002/(SICI)1097-0290(19990620)63:6<694::AID-BIT7>3.0.CO;2-M |
DatabaseName | AGRIS Istex Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Engineering Research Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Biology Anatomy & Physiology |
EISSN | 1097-0290 |
EndPage | 704 |
ExternalDocumentID | 399819 10397826 1801967 BIT7 ark_67375_WNG_5R80LN1L_V US201302931053 |
Genre | article Journal Article |
GroupedDBID | --- -~X .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23N 31~ 33P 3EH 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAJUZ AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABCVL ABEML ABHUG ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACPRK ACSCC ACSMX ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AI. AIAGR AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BLYAC BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FBQ FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LH6 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RBB RIWAO RJQFR RNS ROL RWI RX1 RYL SAMSI SUPJJ SV3 TN5 UB1 V2E VH1 W8V W99 WBKPD WH7 WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WSB WXSBR WYISQ XFK XG1 XPP XSW XV2 Y6R ZGI ZXP ZZTAW ~02 ~IA ~KM ~WT AHBTC AITYG BSCLL HGLYW OIG 08R AAPBV IQODW CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 P64 7X8 |
ID | FETCH-LOGICAL-f4397-7653c7a5e9a24c04c1cda79af3052f8fc59845c7859baf694328d2ab22a543323 |
IEDL.DBID | 33P |
ISSN | 0006-3592 |
IngestDate | Fri Aug 16 22:01:08 EDT 2024 Fri Aug 16 09:25:05 EDT 2024 Fri Aug 16 23:28:54 EDT 2024 Sat Sep 28 07:34:11 EDT 2024 Sun Oct 29 17:08:19 EDT 2023 Sat Aug 24 00:52:19 EDT 2024 Wed Oct 30 09:56:08 EDT 2024 Wed Dec 27 19:15:12 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Productivity Glucan 1,4-α-glucosidase Stability Ethanol Enzyme Coimmobilization Immobilization Maltose Optimization Glycosidases Production Bacteria Hydrolases Kinetics Mathematical model Immobilized enzyme Entrapped microorganism Zymomonas mobilis |
Language | English |
License | CC BY 4.0 Copyright 1999 John Wiley & Sons, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-f4397-7653c7a5e9a24c04c1cda79af3052f8fc59845c7859baf694328d2ab22a543323 |
Notes | istex:4F8CCC780BC756D88218CDCEB624F89CCBC6E8F4 ark:/67375/WNG-5R80LN1L-V ArticleID:BIT7 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PMID | 10397826 |
PQID | 17291186 |
PQPubID | 23462 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_69880624 proquest_miscellaneous_21394288 proquest_miscellaneous_17291186 pubmed_primary_10397826 pascalfrancis_primary_1801967 wiley_primary_10_1002_SICI_1097_0290_19990620_63_6_694_AID_BIT7_3_0_CO_2_M_BIT7 istex_primary_ark_67375_WNG_5R80LN1L_V fao_agris_US201302931053 |
PublicationCentury | 1900 |
PublicationDate | 20 June 1999 |
PublicationDateYYYYMMDD | 1999-06-20 |
PublicationDate_xml | – month: 06 year: 1999 text: 20 June 1999 day: 20 |
PublicationDecade | 1990 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: New York, NY – name: United States |
PublicationTitle | Biotechnology and bioengineering |
PublicationTitleAlternate | Biotechnol. Bioeng |
PublicationYear | 1999 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | Hartmeier W. 1990. Co-immobilization of enzymes and whole cells. Food Biotechnol 4:1, 399-407. Hooymans CM, Stoop ML, Boo M, Luyben KCAM. 1992. Comparison of two experimental methods for the determination of Michaelis-Menten kinetics of an immobilized enzyme. Biotechnol Bioeng 40:16-24. Lee JM, Woodward J. 1983. Properties and application of immobilized β-D-glucosidase coentrapped with Zymomonas mobilis in calcium alginate. Biotechnol Bioeng 25:2441-2451. Hunik JH, Bos CG, Van den Hoogen MP, De Gooijer CD, Tramper J. 1994. Co-immobilized Nitrosomonas europaea and Nitrobacter agilis cells: validation of a dynamic model for simultaneous substrate conversion and growth in κ-carrageenan gel beads. Biotechnol Bioeng 43:1153-1163. Lens PNL, De Beer D, Cronenberg CCH, Houwen FP, Ottengraf SPP, Verstraete WH. 1993. Heterogeneous distribution of microbial activity in methanogenic aggregates: pH and glucose microprofiles. Appl Environm Microbiol 59:11, 3803-3815. Cronenberg CCH, Van Groen B, De Beer D, Van den Heuvel JC. 1991. Oxygen independent glucose microsensor based on glucose oxidase. Anal Chim Acta 242:275-278. Maeda H, Suzuki H. 1972. Preparation and general properties of glucoamylase bound to halogenacetyl cellulose. Agric Biol Chem 36:9, 1581-1593. John G, Eberhardt I, Zeitz A, Hellendoorn L, Schügerl K. 1996. Co-immobilized aerobic/anaerobic mixed cultures in shaked flasks. J Biotechnol 46:209-219. Press WH, Flannery BP, Teukolsky SA, Vetterling WT. 1989. Numerical recipes in Pascal: The art of scientific computing. New York: Cambridge University Press. Tanaka H, Kurosawa H, Murakami H. 1986. Ethanol production from starch by a co-immobilized mixed culture system of Aspergillus awamori and Zymomonas mobilis. Biotechnol Bioeng 28:1761-1768. Jain VK, Toran-Diaz I, Baratti J. 1985. Preparation and characterization of immobilized cells of Zymomonas mobilis for ethanol production. Biotechnol Bioeng 27:273-279. Korgel BA, Rotem A, Monbouquette HG. 1992. Effective diffusivity of galactose in calcium alginate gels containing immobilised Zymomonas mobilis. Biotechnol Prog 8:111-117. Medline Kusunoki K, Kawakami K, Shiraishi F, Kato K, Kai M. 1982. A kinetic expression for hydrolysis of soluble starch by glucoamylase. Biotechnol Bioeng 24:347-354. Kim CH, Rhee SK. 1993. Process development for simultaneous starch saccharification and ethanol fermentation by Zymomonas mobilis. Process Biochem 28:331-339. Swings J, De Ley J. 1977. The biology of Zymomonas. Bacteriol Rev 41:1, 1-46. Medline Hannoun BJM, Stephanopoulos G. 1986. Diffusion coefficients of glucose and ethanol in cell-free and cell-occupied calcium alginate membranes. Biotechnol Bioeng 28:829-835. Ranz WE, Marshall WR. 1952. Evaporation from drops. I. Chem Eng Prog 48:141-146. Cronenberg CCH, Van den Heuvel JC, Ottengraf SPP. 1993. Direct measurement of glucose profiles in immobilized yeast gels with a pH-insensitive micro-electrode at anaerobic conditions. Biotechnol Tech 7:237-242. Kim CH, Lee GM, Han MH, Rhee SK. 1987. Co-immobilization of Zymomonas mobilis and amyloglucosidase in κ-carrageenan for simultaneous saccharification and ethanol fermentation. Kor J Appl Microbiol Bioeng 15:1, 55-60. Reid RC, Prausnitz JM, Poling BE. 1988. The properties of gases and liquids. Singapore: McGraw-Hill Book Company. Fieschko J, Humphrey AE. 1983. Effects of temperature and ethanol concentration on the maintenance and yield coefficient of Zymomonas mobilis. Biotechnol Bioeng 25:1655-1660. Roig MG, Slade A, Kennedy JF, Taylor DW, Garaita MG. 1995. Investigations of stabilities, pH, and temperature profiles and kinetic parameters of glucoamylase on plastic supports. Appl Biochem Biotechnol 50:11-33. Lewis WK, Whitman WG. 1924. Principles of gas absorptions. Ind Eng Chem 16:1215-1220. dos Santos VAPM, Marchal LM, Tramper J, Wijffels RH. 1996. Modeling and evaluation of an integrated nitrogen removal system with microorganisms co-immobilised in double-layer gel beads. Biotechnol Prog 12:240-248. Beeftink HH, Van der Heijden RTJM, Heijnen JJ. 1990. Maintenance requirements: Energy supply from simultaneous endogenous respiration and substrate consumption. FEMS Microbiol Ecol 73:203-210. Jöbses IML, Egberts GTC, Van Baalen A, Roels JA. 1985. Mathematical modelling of growth and substrate conversion of Zymomonas mobilis at 30 and 35°C. Biotechnol Bioeng 27:984-995. Jöbses IML, Roels JA. 1986. The inhibition of the maximum specific growth and fermentation rate of Zymomonas mobilis by ethanol. Biotechnol Bioeng 28:554-563. Margaritis A, Bajpai PK, Wallace JB. 1981. High ethanol productivities using small Ca-alginate beads of immobilized cells of Zymomonas mobilis. Biotechnol Lett 3:11, 613-618. Jöbses IML, Egberts GTC, Luyben KCAM, Roels JA. 1986. Fermentation kinetics of Zymomonas mobilis at high ethanol concentrations: Oscillations in continuous cultures. Biotechnol Bioeng 28:868-877. 1990; 73 1993; 7 1995; 50 1993; 28 1981; 3 1996 1977; 41 1985; 27 1996; 12 1994; 43 1987; 15 1991; 242 1993; 59 1982; 24 1992; 8 1952; 48 1987 1986; 28 1924; 16 1972; 36 1996; 46 1969 1983; 25 1992; 40 1989 1990; 4 1988 |
References_xml | – start-page: 31 year: 1996 end-page: 38 – volume: 24 start-page: 347 year: 1982 end-page: 354 article-title: A kinetic expression for hydrolysis of soluble starch by glucoamylase publication-title: Biotechnol Bioeng – volume: 25 start-page: 1655 year: 1983 end-page: 1660 article-title: Effects of temperature and ethanol concentration on the maintenance and yield coefficient of Zymomonas mobilis publication-title: Biotechnol Bioeng – volume: 8 start-page: 111 year: 1992 end-page: 117 article-title: Effective diffusivity of galactose in calcium alginate gels containing immobilised publication-title: Biotechnol Prog – volume: 59 start-page: 3803 issue: 11 year: 1993 end-page: 3815 article-title: Heterogeneous distribution of microbial activity in methanogenic aggregates: pH and glucose microprofiles publication-title: Appl Environm Microbiol – volume: 36 start-page: 1581 issue: 9 year: 1972 end-page: 1593 article-title: Preparation and general properties of glucoamylase bound to halogenacetyl cellulose publication-title: Agric Biol Chem – volume: 12 start-page: 240 year: 1996 end-page: 248 article-title: Modeling and evaluation of an integrated nitrogen removal system with microorganisms co‐immobilised in double‐layer gel beads publication-title: Biotechnol Prog – year: 1989 – volume: 27 start-page: 984 year: 1985 end-page: 995 article-title: Mathematical modelling of growth and substrate conversion of at 30 and 35°C publication-title: Biotechnol Bioeng – volume: 28 start-page: 554 year: 1986 end-page: 563 article-title: The inhibition of the maximum specific growth and fermentation rate of by ethanol publication-title: Biotechnol Bioeng – volume: 3 start-page: 613 issue: 11 year: 1981 end-page: 618 article-title: High ethanol productivities using small Ca‐alginate beads of immobilized cells of publication-title: Biotechnol Lett – volume: 27 start-page: 273 year: 1985 end-page: 279 article-title: Preparation and characterization of immobilized cells of for ethanol production publication-title: Biotechnol Bioeng – volume: 242 start-page: 275 year: 1991 end-page: 278 article-title: Oxygen independent glucose microsensor based on glucose oxidase publication-title: Anal Chim Acta – volume: 41 start-page: 1 issue: 1 year: 1977 end-page: 46 article-title: The biology of publication-title: Bacteriol Rev – volume: 48 start-page: 141 year: 1952 end-page: 146 article-title: Evaporation from drops. I publication-title: Chem Eng Prog – volume: 4 start-page: 399 issue: 1 year: 1990 end-page: 407 article-title: Co‐immobilization of enzymes and whole cells publication-title: Food Biotechnol – start-page: 647 year: 1969 – start-page: 589 year: 1987 – volume: 25 start-page: 2441 year: 1983 end-page: 2451 article-title: Properties and application of immobilized β‐ ‐glucosidase coentrapped with in calcium alginate publication-title: Biotechnol Bioeng – volume: 46 start-page: 209 year: 1996 end-page: 219 article-title: Co‐immobilized aerobic/anaerobic mixed cultures in shaked flasks publication-title: J Biotechnol – volume: 28 start-page: 331 year: 1993 end-page: 339 article-title: Process development for simultaneous starch saccharification and ethanol fermentation by publication-title: Process Biochem – volume: 15 start-page: 55 issue: 1 year: 1987 end-page: 60 article-title: Co‐immobilization of and amyloglucosidase in κ‐carrageenan for simultaneous saccharification and ethanol fermentation publication-title: Kor J Appl Microbiol Bioeng – volume: 28 start-page: 1761 year: 1986 end-page: 1768 article-title: Ethanol production from starch by a co‐immobilized mixed culture system of and publication-title: Biotechnol Bioeng – year: 1988 – volume: 28 start-page: 868 year: 1986 end-page: 877 article-title: Fermentation kinetics of at high ethanol concentrations: Oscillations in continuous cultures publication-title: Biotechnol Bioeng – volume: 40 start-page: 16 year: 1992 end-page: 24 article-title: Comparison of two experimental methods for the determination of Michaelis–Menten kinetics of an immobilized enzyme publication-title: Biotechnol Bioeng – volume: 73 start-page: 203 year: 1990 end-page: 210 article-title: Maintenance requirements: Energy supply from simultaneous endogenous respiration and substrate consumption publication-title: FEMS Microbiol Ecol – volume: 7 start-page: 237 year: 1993 end-page: 242 article-title: Direct measurement of glucose profiles in immobilized yeast gels with a pH‐insensitive micro‐electrode at anaerobic conditions publication-title: Biotechnol Tech – volume: 28 start-page: 829 year: 1986 end-page: 835 article-title: Diffusion coefficients of glucose and ethanol in cell‐free and cell‐occupied calcium alginate membranes publication-title: Biotechnol Bioeng – volume: 16 start-page: 1215 year: 1924 end-page: 1220 article-title: Principles of gas absorptions publication-title: Ind Eng Chem – volume: 43 start-page: 1153 year: 1994 end-page: 1163 article-title: Co‐immobilized Nitrosomonas europaea and Nitrobacter agilis cells: validation of a dynamic model for simultaneous substrate conversion and growth in κ‐carrageenan gel beads publication-title: Biotechnol Bioeng – volume: 50 start-page: 11 year: 1995 end-page: 33 article-title: Investigations of stabilities, pH, and temperature profiles and kinetic parameters of glucoamylase on plastic supports publication-title: Appl Biochem Biotechnol |
SSID | ssj0007866 |
Score | 1.6461449 |
Snippet | High operational stability and productivity of co-immobilised systems are important aspects for their successful application in industrial processes. A dynamic... High operational stability and productivity of co‐immobilised systems are important aspects for their successful application in industrial processes. A dynamic... Time dependent intraparticle concentration profiles and macroscopic conversion were modeled to study the operational stability and productivity of... |
SourceID | proquest pubmed pascalfrancis wiley istex fao |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 694 |
SubjectTerms | amyloglucosidase Biocatalysts Bioconversion Biological and medical sciences Biomass Biotechnology Biotechnology - methods co-immobilised systems Coimmobilization Computer simulation dynamic modelling Enzyme inhibition Enzymes, Immobilized - chemistry Enzymes, Immobilized - metabolism Ethanol Ethanol - metabolism Fundamental and applied biological sciences. Psychology glucan 1,4-alpha-glucosidase Glucan 1,4-alpha-Glucosidase - chemistry Glucan 1,4-alpha-Glucosidase - metabolism Glucose Growth kinetics immobilization Immobilization techniques Kinetics Mathematical models Methods. Procedures. Technologies Models, Biological Polyethylenes stability Zymomonas - enzymology Zymomonas mobilis |
Title | Kinetics and performance of a co-immobilised system of amyloglucosidase and Zymomonas mobilis |
URI | https://api.istex.fr/ark:/67375/WNG-5R80LN1L-V/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2F%28SICI%291097-0290%2819990620%2963%3A6%3C694%3A%3AAID-BIT7%3E3.0.CO%3B2-M https://www.ncbi.nlm.nih.gov/pubmed/10397826 https://search.proquest.com/docview/17291186 https://search.proquest.com/docview/21394288 https://search.proquest.com/docview/69880624 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwxV1bb9MwFLZgErcHLh1jAQZ-oNP2kC21E8cuaFKbdaxiaye6wcSL5ToJmlCTaVklKvHAT-A38ks4dpJ2k9gbElIeHCXxkezv3OLjzwi9MQQgiU-pq1pKuL4WzFWhp4zi-WlrrHVqeWb3R-HglO_2DE3Oj3ovTMkPMf_hZjTD2muj4GpcbC9IQyEAG_WjPiTMZhHV9YjwDLURBDweI9AEZMEksyaNmPChBVenv-t2-8dhk_bolrcVDZu0S9xDMOCQZtj9H_RobsZDXi50mpSbBoLcRTuV8O0NI3hzLnajFrrJaJu9A3Htdi1qpxT0FsSA90pVDkGwmb_vpghTFTAPaXmAxt8i3OsBs_V4e4_-71g9Rg-rSBl3Smg_QbeSrIGWO5m6zCczvI5t7apdFGigO926dS-qT7BroAdXyBaXkfwAbUNKjVUW4_PFhgmcp1hhnf_--esMtNJUCxdJjEuOa_twMoPObW3_WQxe33bwZTbJQYVVgatPnqKTvd5xtO9Wx0u4qYnC3JAFVIcqSIQivvZ83dKxCoVKwQSSlKc6ENwPdMgDMVYpDAwlPCZqTIgKDOsbXUFLWZ4lqwhzHcZaJYb7h_uaJ4IKj2vOOKWMgk9w0CpMvVRfwXDLkxGxy8UCIuuAOmjd4kGel-wiUl18M8V2YSA_D97L4CP3DgatA_nJQWvXADP_oMUNx1HooNc1gCSMs1n3UVmSTwsJMSq4NM5ufoNAHgB5KL_5DSbA0DPiO-hZic2FeA8GE5JUBw0tBK88MITYRBrkVYUOgDtZo04yKhn060uAmjRQk1R6MhpKIg_t_fN_3uMLdL-i3QDv8BItXV5MkzV0u4inr6zy_wEsnFQ_ |
link.rule.ids | 315,782,786,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwxV1bb9MwFLbYEAweuGzACozlgU7bQ7bUThy7oElt1tFqvSDaAeLFcp0ETajNtK4SfUDiJ_Ab-SWc4zTtJrE3JKQ8OEriI9nfucXHnwl5jQQgic-Yqytaur6R3NWhp1Hx_LQyNCa1PLPNftj9LI4aSJPzo9gLk_NDLH64oWZYe40Kjj-kD5asoRCB9VtRCzJmXEV1PSo95DaCiMfjFJoALZhlXmYRlz604Kq1jtx6axCWWYPte_tRr8zq1O2skNs-ByTjDhD2fmHIQ5EvdWLSzQJJ75LDufSDXZS8t5C7W0jd46zK34K8arWQdZhLegNywH-lOoMwGGfwO5Zh6gnMRJofofG3GPd6yGx93vHD_zxaj8iDebDs1HJ0Pya3kvE62aiN9WU2mjk7ji1ftesC6-ROvWitRcUhduvk_hW-xQ2iTqCNvNSOHsfO-XLPhJOljnZM9vvnrzNQTCwYniSxk9Nc24ejGXRuy_vPYnD8toMvs1EGWqwnzvyTJ-T0uDGImu78hAk3xUDMDXnATKiDRGrqG883FRPrUOoUrCBNRWoCKfzAhCKQQ53CwDAqYqqHlOoAid_YU7I6zsbJJnGECWOjE6T_Eb4RiWTSE0ZwwRhn4BZKZBPmXumvYLvVaZ_aFWMJwXXASmTHAkKd5wQjSl98w3q7MFCfuu9U8EF47W6lrT6WyNY1xCw-qAikOQpLZLtAkIJxxqUfPU6y6URBmApeTfCb36CQCkAqKm5-g0uw9Zz6JfIsB-dSvAeDCXlqifQsBq88QE5sqhB581oHwJ0qUKc4Uxz69RVATSHUFFOeinqKqo69f_7Pe9wma81Bp63are7JC3JvzsIBzuIlWb28mCZbZGUST19ZS_AHwxBYZw |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwxV3dbtMwFLbYEAMu-OmABRjLBZ22i2ypnTh2QZPatGXVunZaN0DcWK6ToAk1qdZVohIXPALPyJNw7CTtJrE7JKReuEriI9nf-cs5-YzQW00AEnuEOLImueMpTh0ZuFIrnpfURkolhmf2cBj0P7NWW9Pk_Ci_hcn5IRYv3LRmGHutFXwSJftL0lAIwIbdsAsJsy6iOi7mrqY2goDHpRiGgCzYZFolIeUejODX6LacZvcsqJI22XP3wkGVNLFzvILuehDHa-Z9Qk4WdjxgeaVT59zE53gNHRTS93e05N2F3J1S6i4ldfoe5NXrpayDXNI7kAPuK5EZRMF6A7_rLkw5hY1I8hM0_hbi3oyYjcvrPP6_i_UEPSpCZbuRY_spuhOnFbTeSOVVNp7b27ZpXjVVgQq61yxH98PyCLsKeniNbXEdiSMYa1ZqW6aRPVl-MWFniS1tlf3--esC1FK3C0_jyM5Jrs3F8RwmN839FxG4fTPBl_k4Ax2WU7t45Bk677TPwkOnOF_CSXQY5gTUJyqQfswl9pTrqZqKZMBlAjYQJyxRPmeerwLm85FMYGEIZhGWI4ylr2nfyHO0mmZpvIFspoJIyViT_zBPsZgT7jLFKCOEEnAKFtqArRfyK1hucT7Epl7MIbT2iYW2DR7EJKcXEfLym-62C3zxqf9B-KfM7fVrPfHRQps3ALN4oMY0yVFgoa0SQALWWRd-ZBpns6mAIBV8GqO334EhEYBElN1-B-Vg6Sn2LPQix-ZSvAuLCVmqhQYGgtcuaEZsLDTyik4HwJ0oUScoERTm9QRATWioCSJcEQ4EFsfm_8t_PuMWWjtpdUSv2z96hR4UFBzgKV6j1avLWbyJVqbR7I2xA38AFURXDQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kinetics+and+performance+of+a+co%E2%80%90immobilised+system+of+amyloglucosidase+and+Zymomonas+mobilis&rft.jtitle=Biotechnology+and+bioengineering&rft.au=Hellendoorn%2C+L.&rft.au=Ottengraf%2C+S.+P.+P.&rft.au=van+den+Heuvel%2C+J.+C.&rft.au=Pennings%2C+J.+A.+M.+M.&rft.date=1999-06-20&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0006-3592&rft.eissn=1097-0290&rft.volume=63&rft.issue=6&rft.spage=694&rft.epage=704&rft_id=info:doi/10.1002%2F%28SICI%291097-0290%2819990620%2963%3A6%3C694%3A%3AAID-BIT7%3E3.0.CO%3B2-M&rft.externalDBID=10.1002%252F%2528SICI%25291097-0290%252819990620%252963%253A6%253C694%253A%253AAID-BIT7%253E3.0.CO%253B2-M&rft.externalDocID=BIT7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3592&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3592&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3592&client=summon |