Kinetics and performance of a co-immobilised system of amyloglucosidase and Zymomonas mobilis

High operational stability and productivity of co-immobilised systems are important aspects for their successful application in industrial processes. A dynamic model is required to describe artificially co-immobilised systems because the time needed to reach steady state normally exceeds the operati...

Full description

Saved in:
Bibliographic Details
Published in:Biotechnology and bioengineering Vol. 63; no. 6; pp. 694 - 704
Main Authors: Hellendoorn, L, Ottengraf, S.P.P, Heuvel, J.C. van den, Pennings, J.A.M.M, Santos, V.A.P.M. dos, Wijiffels, R.H
Format: Journal Article
Language:English
Published: New York John Wiley & Sons, Inc 20-06-1999
Wiley
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract High operational stability and productivity of co-immobilised systems are important aspects for their successful application in industrial processes. A dynamic model is required to describe artificially co-immobilised systems because the time needed to reach steady state normally exceeds the operational life span of these systems. Time dependent intraparticle concentration profiles and macroscopic conversion were modelled to study the operational stability and productivity of these systems theoretically. The model was used to describe experimental results of ethanol production from maltose by a co-immobilised system of amyloglucosidase and Zymomonas mobilis. Furthermore, the influence of the immobilisation procedure with glutaraldehyde and polyethyleneimine could also be studied with and incorporated in the model. From the model it could be derived that co-immobilised systems performing a consecutive reaction evolve towards a steady state, characterised by a constant concentration of the intermediate in the particle if product inhibition is neglected. Such a situation develops independently of the biomass concentration and the radial position, and has important consequences for co-immobilised systems. When the concentration of the intermediate in the bulk liquid is lower than this constant value in the biocatalyst particle, two regions may be distinguished in the particle: an inactive peripheral region without biomass and an active core with a biomass concentration depending on the substrate and immobilised enzyme concentration. Unlike immobilised single cell systems, it is possible to obtain a real steady state and therefore a stable situation for co-immobilised systems. However, a high operational life time could only be achieved at the expense of the productivity of the biocatalyst particle. A stability criterion is derived which agrees very well with the simulation results.
AbstractList Time dependent intraparticle concentration profiles and macroscopic conversion were modeled to study the operational stability and productivity of co-immobilized systems. In particular, the model was used to describe experimental results of ethanol production from maltose by a co-immobilized system of amyloglucosidase and Zymomonas mobilis. The influence of the immobilization procedure with glutaraldehyde and polyethyleneimine was also examined with and incorporated in the model. From the model, it was found that co-immobilized systems performing a consecutive reaction evolve towards a steady state.
High operational stability and productivity of co-immobilised systems are important aspects for their successful application in industrial processes. A dynamic model is required to describe artificially co-immobilised systems because the time needed to reach steady state normally exceeds the operational life span of these systems. Time dependent intraparticle concentration profiles and macroscopic conversion were modelled to study the operational stability and productivity of these systems theoretically. The model was used to describe experimental results of ethanol production from maltose by a co-immobilised system of amyloglucosidase and Zymomonas mobilis. Furthermore, the influence of the immobilisation procedure with glutaraldehyde and polyethyleneimine could also be studied with and incorporated in the model. From the model it could be derived that co-immobilised systems performing a consecutive reaction evolve towards a steady state, characterised by a constant concentration of the intermediate in the particle if product inhibition is neglected. Such a situation develops independently of the biomass concentration and the radial position, and has important consequences for co-immobilised systems. When the concentration of the intermediate in the bulk liquid is lower than this constant value in the biocatalyst particle, two regions may be distinguished in the particle: an inactive peripheral region without biomass and an active core with a biomass concentration depending on the substrate and immobilised enzyme concentration. Unlike immobilised single cell systems, it is possible to obtain a real steady state and therefore a stable situation for co-immobilised systems. However, a high operational life time could only be achieved at the expense of the productivity of the biocatalyst particle. A stability criterion is derived which agrees very well with the simulation results.
High operational stability and productivity of co‐immobilised systems are important aspects for their successful application in industrial processes. A dynamic model is required to describe artificially co‐immobilised systems because the time needed to reach steady state normally exceeds the operational life span of these systems. Time dependent intraparticle concentration profiles and macroscopic conversion were modelled to study the operational stability and productivity of these systems theoretically. The model was used to describe experimental results of ethanol production from maltose by a co‐immobilised system of amyloglucosidase and Zymomonas mobilis. Furthermore, the influence of the immobilisation procedure with glutaraldehyde and polyethyleneimine could also be studied with and incorporated in the model. From the model it could be derived that co‐immobilised systems performing a consecutive reaction evolve towards a steady state, characterised by a constant concentration of the intermediate in the particle if product inhibition is neglected. Such a situation develops independently of the biomass concentration and the radial position, and has important consequences for co‐immobilised systems. When the concentration of the intermediate in the bulk liquid is lower than this constant value in the biocatalyst particle, two regions may be distinguished in the particle: an inactive peripheral region without biomass and an active core with a biomass concentration depending on the substrate and immobilised enzyme concentration. Unlike immobilised single cell systems, it is possible to obtain a real steady state and therefore a stable situation for co‐immobilised systems. However, a high operational life time could only be achieved at the expense of the productivity of the biocatalyst particle. A stability criterion is derived which agrees very well with the simulation results. © 1999 John Wiley & Sons, Inc. Biotechnol Bioeng 63: 694–704, 1999.
Author dos Santos, V. A. P. M.
Ottengraf, S. P. P.
Pennings, J. A. M. M.
Hellendoorn, L.
Wijffels, R. H.
van den Heuvel, J. C.
Author_xml – sequence: 1
  fullname: Hellendoorn, L
– sequence: 2
  fullname: Ottengraf, S.P.P
– sequence: 3
  fullname: Heuvel, J.C. van den
– sequence: 4
  fullname: Pennings, J.A.M.M
– sequence: 5
  fullname: Santos, V.A.P.M. dos
– sequence: 6
  fullname: Wijiffels, R.H
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1801967$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/10397826$$D View this record in MEDLINE/PubMed
BookMark eNqFktluEzEUhi1URNPCK8BcINReTPAy3gKqVAKUiLSR6IKEhI4cj6cyzIzDOBHM2-MsLdz1yjryd_6z_Qdorw2tQ-iE4CHBmL4-upyMJ8cEa5ljqvER0VpjQfGxYCPxVuhiNDqdvM_fTa7kCRvi4Xj2hubnj9DgPmUPDTDGImdc0310EOOPFEolxBO0TzDTUlExQN8_-9YtvY2Zacts4boqdI1prctClZnMhtw3TZj72kdXZrGPS9dsvpq-Drf1yoboSxPdJv1b34QmtCZmu5Sn6HFl6uie7d5DdP3xw9X4Uz6dnU3Gp9O8KlIjuRScWWm404YWFheW2NJIbSqGOa1UZblWBbdScT03VRqeUVVSM6fU8IIxyg7Rq63uogu_Vi4uofHRuro2rQurCEIrlbZXPAhSwnRBlXoQJJJqQpRI4PMduJo3roRF5xvT9XC34gS83AEmWlNXXdquj_84hYkWMmE3W-y3r13_nwys_QBrO8D6trC-LdzZAQQDkcYrILkB1m4ABhjGM6BwvomTcL4V9ul2f-6FTfcTUlnJ4evFGfAvCk8vyBRuEv9iy1cmgLntUq_XlxQTlgozgjljfwGKccX5
CODEN BIBIAU
ContentType Journal Article
Copyright Copyright © 1999 John Wiley & Sons, Inc.
1999 INIST-CNRS
Copyright 1999 John Wiley & Sons, Inc.
Copyright_xml – notice: Copyright © 1999 John Wiley & Sons, Inc.
– notice: 1999 INIST-CNRS
– notice: Copyright 1999 John Wiley & Sons, Inc.
DBID FBQ
BSCLL
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
7X8
DOI 10.1002/(SICI)1097-0290(19990620)63:6<694::AID-BIT7>3.0.CO;2-M
DatabaseName AGRIS
Istex
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
Engineering Research Database
MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Biology
Anatomy & Physiology
EISSN 1097-0290
EndPage 704
ExternalDocumentID 399819
10397826
1801967
BIT7
ark_67375_WNG_5R80LN1L_V
US201302931053
Genre article
Journal Article
GroupedDBID ---
-~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23N
31~
33P
3EH
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJUZ
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABCVL
ABEML
ABHUG
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACSMX
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AI.
AIAGR
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BLYAC
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FBQ
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RBB
RIWAO
RJQFR
RNS
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TN5
UB1
V2E
VH1
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WSB
WXSBR
WYISQ
XFK
XG1
XPP
XSW
XV2
Y6R
ZGI
ZXP
ZZTAW
~02
~IA
~KM
~WT
AHBTC
AITYG
BSCLL
HGLYW
OIG
08R
AAPBV
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
7X8
ID FETCH-LOGICAL-f4397-7653c7a5e9a24c04c1cda79af3052f8fc59845c7859baf694328d2ab22a543323
IEDL.DBID 33P
ISSN 0006-3592
IngestDate Fri Aug 16 22:01:08 EDT 2024
Fri Aug 16 09:25:05 EDT 2024
Fri Aug 16 23:28:54 EDT 2024
Sat Sep 28 07:34:11 EDT 2024
Sun Oct 29 17:08:19 EDT 2023
Sat Aug 24 00:52:19 EDT 2024
Wed Oct 30 09:56:08 EDT 2024
Wed Dec 27 19:15:12 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Productivity
Glucan 1,4-α-glucosidase
Stability
Ethanol
Enzyme
Coimmobilization
Immobilization
Maltose
Optimization
Glycosidases
Production
Bacteria
Hydrolases
Kinetics
Mathematical model
Immobilized enzyme
Entrapped microorganism
Zymomonas mobilis
Language English
License CC BY 4.0
Copyright 1999 John Wiley & Sons, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-f4397-7653c7a5e9a24c04c1cda79af3052f8fc59845c7859baf694328d2ab22a543323
Notes istex:4F8CCC780BC756D88218CDCEB624F89CCBC6E8F4
ark:/67375/WNG-5R80LN1L-V
ArticleID:BIT7
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 10397826
PQID 17291186
PQPubID 23462
PageCount 11
ParticipantIDs proquest_miscellaneous_69880624
proquest_miscellaneous_21394288
proquest_miscellaneous_17291186
pubmed_primary_10397826
pascalfrancis_primary_1801967
wiley_primary_10_1002_SICI_1097_0290_19990620_63_6_694_AID_BIT7_3_0_CO_2_M_BIT7
istex_primary_ark_67375_WNG_5R80LN1L_V
fao_agris_US201302931053
PublicationCentury 1900
PublicationDate 20 June 1999
PublicationDateYYYYMMDD 1999-06-20
PublicationDate_xml – month: 06
  year: 1999
  text: 20 June 1999
  day: 20
PublicationDecade 1990
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: New York, NY
– name: United States
PublicationTitle Biotechnology and bioengineering
PublicationTitleAlternate Biotechnol. Bioeng
PublicationYear 1999
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References Hartmeier W. 1990. Co-immobilization of enzymes and whole cells. Food Biotechnol 4:1, 399-407.
Hooymans CM, Stoop ML, Boo M, Luyben KCAM. 1992. Comparison of two experimental methods for the determination of Michaelis-Menten kinetics of an immobilized enzyme. Biotechnol Bioeng 40:16-24.
Lee JM, Woodward J. 1983. Properties and application of immobilized β-D-glucosidase coentrapped with Zymomonas mobilis in calcium alginate. Biotechnol Bioeng 25:2441-2451.
Hunik JH, Bos CG, Van den Hoogen MP, De Gooijer CD, Tramper J. 1994. Co-immobilized Nitrosomonas europaea and Nitrobacter agilis cells: validation of a dynamic model for simultaneous substrate conversion and growth in κ-carrageenan gel beads. Biotechnol Bioeng 43:1153-1163.
Lens PNL, De Beer D, Cronenberg CCH, Houwen FP, Ottengraf SPP, Verstraete WH. 1993. Heterogeneous distribution of microbial activity in methanogenic aggregates: pH and glucose microprofiles. Appl Environm Microbiol 59:11, 3803-3815.
Cronenberg CCH, Van Groen B, De Beer D, Van den Heuvel JC. 1991. Oxygen independent glucose microsensor based on glucose oxidase. Anal Chim Acta 242:275-278.
Maeda H, Suzuki H. 1972. Preparation and general properties of glucoamylase bound to halogenacetyl cellulose. Agric Biol Chem 36:9, 1581-1593.
John G, Eberhardt I, Zeitz A, Hellendoorn L, Schügerl K. 1996. Co-immobilized aerobic/anaerobic mixed cultures in shaked flasks. J Biotechnol 46:209-219.
Press WH, Flannery BP, Teukolsky SA, Vetterling WT. 1989. Numerical recipes in Pascal: The art of scientific computing. New York: Cambridge University Press.
Tanaka H, Kurosawa H, Murakami H. 1986. Ethanol production from starch by a co-immobilized mixed culture system of Aspergillus awamori and Zymomonas mobilis. Biotechnol Bioeng 28:1761-1768.
Jain VK, Toran-Diaz I, Baratti J. 1985. Preparation and characterization of immobilized cells of Zymomonas mobilis for ethanol production. Biotechnol Bioeng 27:273-279.
Korgel BA, Rotem A, Monbouquette HG. 1992. Effective diffusivity of galactose in calcium alginate gels containing immobilised Zymomonas mobilis. Biotechnol Prog 8:111-117. Medline
Kusunoki K, Kawakami K, Shiraishi F, Kato K, Kai M. 1982. A kinetic expression for hydrolysis of soluble starch by glucoamylase. Biotechnol Bioeng 24:347-354.
Kim CH, Rhee SK. 1993. Process development for simultaneous starch saccharification and ethanol fermentation by Zymomonas mobilis. Process Biochem 28:331-339.
Swings J, De Ley J. 1977. The biology of Zymomonas. Bacteriol Rev 41:1, 1-46. Medline
Hannoun BJM, Stephanopoulos G. 1986. Diffusion coefficients of glucose and ethanol in cell-free and cell-occupied calcium alginate membranes. Biotechnol Bioeng 28:829-835.
Ranz WE, Marshall WR. 1952. Evaporation from drops. I. Chem Eng Prog 48:141-146.
Cronenberg CCH, Van den Heuvel JC, Ottengraf SPP. 1993. Direct measurement of glucose profiles in immobilized yeast gels with a pH-insensitive micro-electrode at anaerobic conditions. Biotechnol Tech 7:237-242.
Kim CH, Lee GM, Han MH, Rhee SK. 1987. Co-immobilization of Zymomonas mobilis and amyloglucosidase in κ-carrageenan for simultaneous saccharification and ethanol fermentation. Kor J Appl Microbiol Bioeng 15:1, 55-60.
Reid RC, Prausnitz JM, Poling BE. 1988. The properties of gases and liquids. Singapore: McGraw-Hill Book Company.
Fieschko J, Humphrey AE. 1983. Effects of temperature and ethanol concentration on the maintenance and yield coefficient of Zymomonas mobilis. Biotechnol Bioeng 25:1655-1660.
Roig MG, Slade A, Kennedy JF, Taylor DW, Garaita MG. 1995. Investigations of stabilities, pH, and temperature profiles and kinetic parameters of glucoamylase on plastic supports. Appl Biochem Biotechnol 50:11-33.
Lewis WK, Whitman WG. 1924. Principles of gas absorptions. Ind Eng Chem 16:1215-1220.
dos Santos VAPM, Marchal LM, Tramper J, Wijffels RH. 1996. Modeling and evaluation of an integrated nitrogen removal system with microorganisms co-immobilised in double-layer gel beads. Biotechnol Prog 12:240-248.
Beeftink HH, Van der Heijden RTJM, Heijnen JJ. 1990. Maintenance requirements: Energy supply from simultaneous endogenous respiration and substrate consumption. FEMS Microbiol Ecol 73:203-210.
Jöbses IML, Egberts GTC, Van Baalen A, Roels JA. 1985. Mathematical modelling of growth and substrate conversion of Zymomonas mobilis at 30 and 35°C. Biotechnol Bioeng 27:984-995.
Jöbses IML, Roels JA. 1986. The inhibition of the maximum specific growth and fermentation rate of Zymomonas mobilis by ethanol. Biotechnol Bioeng 28:554-563.
Margaritis A, Bajpai PK, Wallace JB. 1981. High ethanol productivities using small Ca-alginate beads of immobilized cells of Zymomonas mobilis. Biotechnol Lett 3:11, 613-618.
Jöbses IML, Egberts GTC, Luyben KCAM, Roels JA. 1986. Fermentation kinetics of Zymomonas mobilis at high ethanol concentrations: Oscillations in continuous cultures. Biotechnol Bioeng 28:868-877.
1990; 73
1993; 7
1995; 50
1993; 28
1981; 3
1996
1977; 41
1985; 27
1996; 12
1994; 43
1987; 15
1991; 242
1993; 59
1982; 24
1992; 8
1952; 48
1987
1986; 28
1924; 16
1972; 36
1996; 46
1969
1983; 25
1992; 40
1989
1990; 4
1988
References_xml – start-page: 31
  year: 1996
  end-page: 38
– volume: 24
  start-page: 347
  year: 1982
  end-page: 354
  article-title: A kinetic expression for hydrolysis of soluble starch by glucoamylase
  publication-title: Biotechnol Bioeng
– volume: 25
  start-page: 1655
  year: 1983
  end-page: 1660
  article-title: Effects of temperature and ethanol concentration on the maintenance and yield coefficient of Zymomonas mobilis
  publication-title: Biotechnol Bioeng
– volume: 8
  start-page: 111
  year: 1992
  end-page: 117
  article-title: Effective diffusivity of galactose in calcium alginate gels containing immobilised
  publication-title: Biotechnol Prog
– volume: 59
  start-page: 3803
  issue: 11
  year: 1993
  end-page: 3815
  article-title: Heterogeneous distribution of microbial activity in methanogenic aggregates: pH and glucose microprofiles
  publication-title: Appl Environm Microbiol
– volume: 36
  start-page: 1581
  issue: 9
  year: 1972
  end-page: 1593
  article-title: Preparation and general properties of glucoamylase bound to halogenacetyl cellulose
  publication-title: Agric Biol Chem
– volume: 12
  start-page: 240
  year: 1996
  end-page: 248
  article-title: Modeling and evaluation of an integrated nitrogen removal system with microorganisms co‐immobilised in double‐layer gel beads
  publication-title: Biotechnol Prog
– year: 1989
– volume: 27
  start-page: 984
  year: 1985
  end-page: 995
  article-title: Mathematical modelling of growth and substrate conversion of at 30 and 35°C
  publication-title: Biotechnol Bioeng
– volume: 28
  start-page: 554
  year: 1986
  end-page: 563
  article-title: The inhibition of the maximum specific growth and fermentation rate of by ethanol
  publication-title: Biotechnol Bioeng
– volume: 3
  start-page: 613
  issue: 11
  year: 1981
  end-page: 618
  article-title: High ethanol productivities using small Ca‐alginate beads of immobilized cells of
  publication-title: Biotechnol Lett
– volume: 27
  start-page: 273
  year: 1985
  end-page: 279
  article-title: Preparation and characterization of immobilized cells of for ethanol production
  publication-title: Biotechnol Bioeng
– volume: 242
  start-page: 275
  year: 1991
  end-page: 278
  article-title: Oxygen independent glucose microsensor based on glucose oxidase
  publication-title: Anal Chim Acta
– volume: 41
  start-page: 1
  issue: 1
  year: 1977
  end-page: 46
  article-title: The biology of
  publication-title: Bacteriol Rev
– volume: 48
  start-page: 141
  year: 1952
  end-page: 146
  article-title: Evaporation from drops. I
  publication-title: Chem Eng Prog
– volume: 4
  start-page: 399
  issue: 1
  year: 1990
  end-page: 407
  article-title: Co‐immobilization of enzymes and whole cells
  publication-title: Food Biotechnol
– start-page: 647
  year: 1969
– start-page: 589
  year: 1987
– volume: 25
  start-page: 2441
  year: 1983
  end-page: 2451
  article-title: Properties and application of immobilized β‐ ‐glucosidase coentrapped with in calcium alginate
  publication-title: Biotechnol Bioeng
– volume: 46
  start-page: 209
  year: 1996
  end-page: 219
  article-title: Co‐immobilized aerobic/anaerobic mixed cultures in shaked flasks
  publication-title: J Biotechnol
– volume: 28
  start-page: 331
  year: 1993
  end-page: 339
  article-title: Process development for simultaneous starch saccharification and ethanol fermentation by
  publication-title: Process Biochem
– volume: 15
  start-page: 55
  issue: 1
  year: 1987
  end-page: 60
  article-title: Co‐immobilization of and amyloglucosidase in κ‐carrageenan for simultaneous saccharification and ethanol fermentation
  publication-title: Kor J Appl Microbiol Bioeng
– volume: 28
  start-page: 1761
  year: 1986
  end-page: 1768
  article-title: Ethanol production from starch by a co‐immobilized mixed culture system of and
  publication-title: Biotechnol Bioeng
– year: 1988
– volume: 28
  start-page: 868
  year: 1986
  end-page: 877
  article-title: Fermentation kinetics of at high ethanol concentrations: Oscillations in continuous cultures
  publication-title: Biotechnol Bioeng
– volume: 40
  start-page: 16
  year: 1992
  end-page: 24
  article-title: Comparison of two experimental methods for the determination of Michaelis–Menten kinetics of an immobilized enzyme
  publication-title: Biotechnol Bioeng
– volume: 73
  start-page: 203
  year: 1990
  end-page: 210
  article-title: Maintenance requirements: Energy supply from simultaneous endogenous respiration and substrate consumption
  publication-title: FEMS Microbiol Ecol
– volume: 7
  start-page: 237
  year: 1993
  end-page: 242
  article-title: Direct measurement of glucose profiles in immobilized yeast gels with a pH‐insensitive micro‐electrode at anaerobic conditions
  publication-title: Biotechnol Tech
– volume: 28
  start-page: 829
  year: 1986
  end-page: 835
  article-title: Diffusion coefficients of glucose and ethanol in cell‐free and cell‐occupied calcium alginate membranes
  publication-title: Biotechnol Bioeng
– volume: 16
  start-page: 1215
  year: 1924
  end-page: 1220
  article-title: Principles of gas absorptions
  publication-title: Ind Eng Chem
– volume: 43
  start-page: 1153
  year: 1994
  end-page: 1163
  article-title: Co‐immobilized Nitrosomonas europaea and Nitrobacter agilis cells: validation of a dynamic model for simultaneous substrate conversion and growth in κ‐carrageenan gel beads
  publication-title: Biotechnol Bioeng
– volume: 50
  start-page: 11
  year: 1995
  end-page: 33
  article-title: Investigations of stabilities, pH, and temperature profiles and kinetic parameters of glucoamylase on plastic supports
  publication-title: Appl Biochem Biotechnol
SSID ssj0007866
Score 1.6461449
Snippet High operational stability and productivity of co-immobilised systems are important aspects for their successful application in industrial processes. A dynamic...
High operational stability and productivity of co‐immobilised systems are important aspects for their successful application in industrial processes. A dynamic...
Time dependent intraparticle concentration profiles and macroscopic conversion were modeled to study the operational stability and productivity of...
SourceID proquest
pubmed
pascalfrancis
wiley
istex
fao
SourceType Aggregation Database
Index Database
Publisher
StartPage 694
SubjectTerms amyloglucosidase
Biocatalysts
Bioconversion
Biological and medical sciences
Biomass
Biotechnology
Biotechnology - methods
co-immobilised systems
Coimmobilization
Computer simulation
dynamic modelling
Enzyme inhibition
Enzymes, Immobilized - chemistry
Enzymes, Immobilized - metabolism
Ethanol
Ethanol - metabolism
Fundamental and applied biological sciences. Psychology
glucan 1,4-alpha-glucosidase
Glucan 1,4-alpha-Glucosidase - chemistry
Glucan 1,4-alpha-Glucosidase - metabolism
Glucose
Growth kinetics
immobilization
Immobilization techniques
Kinetics
Mathematical models
Methods. Procedures. Technologies
Models, Biological
Polyethylenes
stability
Zymomonas - enzymology
Zymomonas mobilis
Title Kinetics and performance of a co-immobilised system of amyloglucosidase and Zymomonas mobilis
URI https://api.istex.fr/ark:/67375/WNG-5R80LN1L-V/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2F%28SICI%291097-0290%2819990620%2963%3A6%3C694%3A%3AAID-BIT7%3E3.0.CO%3B2-M
https://www.ncbi.nlm.nih.gov/pubmed/10397826
https://search.proquest.com/docview/17291186
https://search.proquest.com/docview/21394288
https://search.proquest.com/docview/69880624
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwxV1bb9MwFLZgErcHLh1jAQZ-oNP2kC21E8cuaFKbdaxiaye6wcSL5ToJmlCTaVklKvHAT-A38ks4dpJ2k9gbElIeHCXxkezv3OLjzwi9MQQgiU-pq1pKuL4WzFWhp4zi-WlrrHVqeWb3R-HglO_2DE3Oj3ovTMkPMf_hZjTD2muj4GpcbC9IQyEAG_WjPiTMZhHV9YjwDLURBDweI9AEZMEksyaNmPChBVenv-t2-8dhk_bolrcVDZu0S9xDMOCQZtj9H_RobsZDXi50mpSbBoLcRTuV8O0NI3hzLnajFrrJaJu9A3Htdi1qpxT0FsSA90pVDkGwmb_vpghTFTAPaXmAxt8i3OsBs_V4e4_-71g9Rg-rSBl3Smg_QbeSrIGWO5m6zCczvI5t7apdFGigO926dS-qT7BroAdXyBaXkfwAbUNKjVUW4_PFhgmcp1hhnf_--esMtNJUCxdJjEuOa_twMoPObW3_WQxe33bwZTbJQYVVgatPnqKTvd5xtO9Wx0u4qYnC3JAFVIcqSIQivvZ83dKxCoVKwQSSlKc6ENwPdMgDMVYpDAwlPCZqTIgKDOsbXUFLWZ4lqwhzHcZaJYb7h_uaJ4IKj2vOOKWMgk9w0CpMvVRfwXDLkxGxy8UCIuuAOmjd4kGel-wiUl18M8V2YSA_D97L4CP3DgatA_nJQWvXADP_oMUNx1HooNc1gCSMs1n3UVmSTwsJMSq4NM5ufoNAHgB5KL_5DSbA0DPiO-hZic2FeA8GE5JUBw0tBK88MITYRBrkVYUOgDtZo04yKhn060uAmjRQk1R6MhpKIg_t_fN_3uMLdL-i3QDv8BItXV5MkzV0u4inr6zy_wEsnFQ_
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwxV1bb9MwFLbYEAweuGzACozlgU7bQ7bUThy7oElt1tFqvSDaAeLFcp0ETajNtK4SfUDiJ_Ab-SWc4zTtJrE3JKQ8OEriI9nfucXHnwl5jQQgic-Yqytaur6R3NWhp1Hx_LQyNCa1PLPNftj9LI4aSJPzo9gLk_NDLH64oWZYe40Kjj-kD5asoRCB9VtRCzJmXEV1PSo95DaCiMfjFJoALZhlXmYRlz604Kq1jtx6axCWWYPte_tRr8zq1O2skNs-ByTjDhD2fmHIQ5EvdWLSzQJJ75LDufSDXZS8t5C7W0jd46zK34K8arWQdZhLegNywH-lOoMwGGfwO5Zh6gnMRJofofG3GPd6yGx93vHD_zxaj8iDebDs1HJ0Pya3kvE62aiN9WU2mjk7ji1ftesC6-ROvWitRcUhduvk_hW-xQ2iTqCNvNSOHsfO-XLPhJOljnZM9vvnrzNQTCwYniSxk9Nc24ejGXRuy_vPYnD8toMvs1EGWqwnzvyTJ-T0uDGImu78hAk3xUDMDXnATKiDRGrqG883FRPrUOoUrCBNRWoCKfzAhCKQQ53CwDAqYqqHlOoAid_YU7I6zsbJJnGECWOjE6T_Eb4RiWTSE0ZwwRhn4BZKZBPmXumvYLvVaZ_aFWMJwXXASmTHAkKd5wQjSl98w3q7MFCfuu9U8EF47W6lrT6WyNY1xCw-qAikOQpLZLtAkIJxxqUfPU6y6URBmApeTfCb36CQCkAqKm5-g0uw9Zz6JfIsB-dSvAeDCXlqifQsBq88QE5sqhB581oHwJ0qUKc4Uxz69RVATSHUFFOeinqKqo69f_7Pe9wma81Bp63are7JC3JvzsIBzuIlWb28mCZbZGUST19ZS_AHwxBYZw
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwxV3dbtMwFLbYEAMu-OmABRjLBZ22i2ypnTh2QZPatGXVunZaN0DcWK6ToAk1qdZVohIXPALPyJNw7CTtJrE7JKReuEriI9nf-cs5-YzQW00AEnuEOLImueMpTh0ZuFIrnpfURkolhmf2cBj0P7NWW9Pk_Ci_hcn5IRYv3LRmGHutFXwSJftL0lAIwIbdsAsJsy6iOi7mrqY2goDHpRiGgCzYZFolIeUejODX6LacZvcsqJI22XP3wkGVNLFzvILuehDHa-Z9Qk4WdjxgeaVT59zE53gNHRTS93e05N2F3J1S6i4ldfoe5NXrpayDXNI7kAPuK5EZRMF6A7_rLkw5hY1I8hM0_hbi3oyYjcvrPP6_i_UEPSpCZbuRY_spuhOnFbTeSOVVNp7b27ZpXjVVgQq61yxH98PyCLsKeniNbXEdiSMYa1ZqW6aRPVl-MWFniS1tlf3--esC1FK3C0_jyM5Jrs3F8RwmN839FxG4fTPBl_k4Ax2WU7t45Bk677TPwkOnOF_CSXQY5gTUJyqQfswl9pTrqZqKZMBlAjYQJyxRPmeerwLm85FMYGEIZhGWI4ylr2nfyHO0mmZpvIFspoJIyViT_zBPsZgT7jLFKCOEEnAKFtqArRfyK1hucT7Epl7MIbT2iYW2DR7EJKcXEfLym-62C3zxqf9B-KfM7fVrPfHRQps3ALN4oMY0yVFgoa0SQALWWRd-ZBpns6mAIBV8GqO334EhEYBElN1-B-Vg6Sn2LPQix-ZSvAuLCVmqhQYGgtcuaEZsLDTyik4HwJ0oUScoERTm9QRATWioCSJcEQ4EFsfm_8t_PuMWWjtpdUSv2z96hR4UFBzgKV6j1avLWbyJVqbR7I2xA38AFURXDQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kinetics+and+performance+of+a+co%E2%80%90immobilised+system+of+amyloglucosidase+and+Zymomonas+mobilis&rft.jtitle=Biotechnology+and+bioengineering&rft.au=Hellendoorn%2C+L.&rft.au=Ottengraf%2C+S.+P.+P.&rft.au=van+den+Heuvel%2C+J.+C.&rft.au=Pennings%2C+J.+A.+M.+M.&rft.date=1999-06-20&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0006-3592&rft.eissn=1097-0290&rft.volume=63&rft.issue=6&rft.spage=694&rft.epage=704&rft_id=info:doi/10.1002%2F%28SICI%291097-0290%2819990620%2963%3A6%3C694%3A%3AAID-BIT7%3E3.0.CO%3B2-M&rft.externalDBID=10.1002%252F%2528SICI%25291097-0290%252819990620%252963%253A6%253C694%253A%253AAID-BIT7%253E3.0.CO%253B2-M&rft.externalDocID=BIT7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3592&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3592&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3592&client=summon