Effects of supplements that contain increasing amounts of metabolizable protein with or without Ca-propionate salt on postpartum interval and nutrient partitioning in young beef cows

Cattle grazing winter range forages exhibit interannual variation in response to supplementation. This variation may be mediated by circulating concentrations and subsequent metabolism of glucose, which are influenced by forage quality and availability. A study conducted at the Corona Range and Live...

Full description

Saved in:
Bibliographic Details
Published in:Journal of animal science Vol. 84; no. 2; pp. 433 - 446
Main Authors: Waterman, R.C, Sawyer, J.E, Mathis, C.P, Hawkins, D.E, Donart, G.B, Petersen, M.K
Format: Journal Article
Language:English
Published: Savoy, IL Am Soc Animal Sci 01-02-2006
American Society of Animal Science
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cattle grazing winter range forages exhibit interannual variation in response to supplementation. This variation may be mediated by circulating concentrations and subsequent metabolism of glucose, which are influenced by forage quality and availability. A study conducted at the Corona Range and Livestock Research Center during 2 dry years evaluated responses of young postpartum beef cows (n = 51, initial BW = 408 ± 3 kg, and BCS = 5.1 ± 0.04 in year 1; n = 36, initial BW = 393 ± 4 kg, and BCS = 4.5 ± 0.05 in year 2) to supplements that met or exceeded metabolizable protein (MP) requirements. Supplements were fed at 908 g/d per cow and provided 327 g of CP, 118 g of ruminally undegradable protein (RUP), and 261 g of MP from RUP (RMP), calculated to meet the MP requirement; 327 g of CP, 175 g of RUP, and 292 g of MP from RUP (RMP⁺), which supplied 31 g of excess MP; or 327 g of CP, 180 g of RUP, 297 g of MP from RUP, and 100 g of propionate salt (NutroCal, Kemin Industries, Inc., Des Moines, IA; RMP⁺P), which supplied 36 g of excess MP. Body weights were recorded once every 2 wk, and blood samples were collected 1x/wk in year 1 and 2x/wk in year 2 for 100 d postpartum. Postpartum anestrous was evaluated by progesterone from weekly blood samples, and pregnancy was confirmed by rectal palpation at weaning. As MP from RUP with or without propionate increased, a decrease (P = 0.03) was observed in postpartum interval; however, differences in pregnancy percentage (P = 0.54) were not influenced by treatments. We hypothesized that additional AA from RUP along with propionate would increase supply of glucogenic precursors and, therefore, glucogenic potential of the diet. Therefore, a postpartum glucose tolerance test was conducted near the nadir of cow BW to evaluate the rate of glucose clearance. Glucose tolerance tests showed that RMP⁺- or RMP⁺P-supplemented cows had greater (P = 0.03) rates of glucose clearance, which might have influenced the observed abbreviation of the postpartum interval. A glucose tolerance test conducted at the end of supplemental treatments revealed no differences in glucose clearance (P = 0.47) among previously supplemented cows. These data suggest that not only vegetative quality, duration of lactation, and season of grazing, but also type of supplementation may play a pivotal role in the young postpartum beef cow's ability to respond and incorporate nutrients into insulin-sensitive tissues.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-8812
1525-3163
DOI:10.2527/2006.842433x