Characterization of recently 14C pulse-labelled carbon from roots by fractionation of soil organic matter

Summary The inability of physical and chemical techniques to separate soil organic matter into fractions that have distinct turnover rates has hampered our understanding of carbon (C) and nutrient dynamics in soil. A series of soil organic matter fractionation techniques (chemical and physical) were...

Full description

Saved in:
Bibliographic Details
Published in:European journal of soil science Vol. 56; no. 3; pp. 329 - 341
Main Authors: Bhupinderpal-Singh, Hedley, M.J, Saggar, S
Format: Journal Article
Language:English
Published: Oxford, UK; Malden, USA Blackwell Science Ltd 01-06-2005
Blackwell Science
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Summary The inability of physical and chemical techniques to separate soil organic matter into fractions that have distinct turnover rates has hampered our understanding of carbon (C) and nutrient dynamics in soil. A series of soil organic matter fractionation techniques (chemical and physical) were evaluated for their ability to distinguish a potentially labile C pool, that is ‘recent’ root and root‐derived soil C. ‘Recent’ root and root‐derived C was operationally defined as root and soil C labelled by 14CO2 pulse labelling of rye grass–clover pasture growing on undisturbed cores of soil. Most (50–94%) of total soil + root 14C activity was recovered in roots. Sequential extraction of the soil + roots with resin, 0.1 m NaOH and 1 m NaOH allocated ‘recent’ soil + root 14C to all fractions including the alkali‐insoluble residual fraction. Approximately 50% was measured in the alkali‐insoluble residue but specific activity was greater in the resin and 1 m NaOH fractions. Hot 0.5 m H2SO4 hydrolysed 80% of the 14C in the alkali‐insoluble residue of soil + roots but this diminished specific activity by recovering much non‐14C organic matter. Pre‐alkali extraction treatment with 30% H2O2 and post‐alkali treatment extractions with hot 1 m HNO3 removed organic matter with a large 14C specific activity from the alkali‐insoluble residue. Density separation failed to isolate a significant pool of ‘recent’ root‐derived 14C. The density separation of 14C‐labelled roots, and roots remixed with non‐radioactive soil, showed that the adhesion of soil particles to young 14C‐labelled roots was the likely cause of the greater proportion of 14C in the heavy fraction. Simple chemical or density fractionations of C appear unsuitable for characterizing ‘recent’ root‐derived C into fractions that can be designated labile C (short turnover time).
AbstractList Summary The inability of physical and chemical techniques to separate soil organic matter into fractions that have distinct turnover rates has hampered our understanding of carbon (C) and nutrient dynamics in soil. A series of soil organic matter fractionation techniques (chemical and physical) were evaluated for their ability to distinguish a potentially labile C pool, that is ‘recent’ root and root‐derived soil C. ‘Recent’ root and root‐derived C was operationally defined as root and soil C labelled by 14CO2 pulse labelling of rye grass–clover pasture growing on undisturbed cores of soil. Most (50–94%) of total soil + root 14C activity was recovered in roots. Sequential extraction of the soil + roots with resin, 0.1 m NaOH and 1 m NaOH allocated ‘recent’ soil + root 14C to all fractions including the alkali‐insoluble residual fraction. Approximately 50% was measured in the alkali‐insoluble residue but specific activity was greater in the resin and 1 m NaOH fractions. Hot 0.5 m H2SO4 hydrolysed 80% of the 14C in the alkali‐insoluble residue of soil + roots but this diminished specific activity by recovering much non‐14C organic matter. Pre‐alkali extraction treatment with 30% H2O2 and post‐alkali treatment extractions with hot 1 m HNO3 removed organic matter with a large 14C specific activity from the alkali‐insoluble residue. Density separation failed to isolate a significant pool of ‘recent’ root‐derived 14C. The density separation of 14C‐labelled roots, and roots remixed with non‐radioactive soil, showed that the adhesion of soil particles to young 14C‐labelled roots was the likely cause of the greater proportion of 14C in the heavy fraction. Simple chemical or density fractionations of C appear unsuitable for characterizing ‘recent’ root‐derived C into fractions that can be designated labile C (short turnover time).
Author Bhupinderpal-Singh
Hedley, M.J
Saggar, S
Author_xml – sequence: 1
  fullname: Bhupinderpal-Singh
– sequence: 2
  fullname: Hedley, M.J
– sequence: 3
  fullname: Saggar, S
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16748628$$DView record in Pascal Francis
BookMark eNpFkctOwzAQRS1UJFrgG_CGZYIfsZMsWEAFFFSBqlKxtBw_iksaV04QLV-PQ1HxxjOae49Gd0Zg0PjGAAAxSnF8V6sUU84SQosyJQhlKUKcl-n2CAwPg0FfM5ygnGUnYNS2K4QwxWU5BG78LoNUnQnuW3bON9BbGIwyTVfvIM7GcPNZtyapZWXq2mioZKiiyga_hsH7roXVLnYREc0HQutdDX1YysYpuJZd5J-BYysj6vzvPwWL-7vX8SSZvjw8jm-micUZLxNVWUYzyTRHBaO0INbQkpOqJMpSZGilOdVFRnOd6YKzsmBW50xjbSnXyub0FFzuuRvZKlnH1RrlWrEJbi3DTmCeZwUnRdRd73Vfrja7_zkSfa5iJfr4RB-f6HMVv7mKrbh7ms9jFf3J3u_azmwPfhk-BM9pzsTb84O4nU1mZJrPxSzqL_Z6K72QyxB3WsxJvAPC8RqMEfoDOTSJhA
ContentType Journal Article
Copyright 2005 INIST-CNRS
Copyright_xml – notice: 2005 INIST-CNRS
DBID FBQ
BSCLL
IQODW
DOI 10.1111/j.1365-2389.2004.00669.x
DatabaseName AGRIS
Istex
Pascal-Francis
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1365-2389
EndPage 341
ExternalDocumentID 16748628
EJSS669
ark_67375_WNG_BQHQ2L7S_Q
US201301001552
Genre article
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29G
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAYJJ
AAZKR
ABCQN
ABCUV
ABEML
ABHUG
ABJNI
ABOGM
ABPTK
ABPVW
ABWRO
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACPRK
ACSCC
ACSMX
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AHEFC
AI.
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
FBQ
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HVGLF
HZI
HZ~
IHE
IX1
J0M
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
O66
O9-
OVD
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
TWZ
UB1
VH1
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WUPDE
WXSBR
WYISQ
XG1
XOL
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAHBH
AHBTC
AITYG
BSCLL
HGLYW
OIG
08R
AAPBV
IQODW
ID FETCH-LOGICAL-f1469-cbf534a5d60853382fe3962b92cf30e3bd63d8437d4d865985fd75d1df36dcf73
IEDL.DBID 33P
ISSN 1351-0754
IngestDate Sun Oct 22 16:05:13 EDT 2023
Sat Aug 24 00:38:49 EDT 2024
Wed Oct 30 09:52:28 EDT 2024
Wed Dec 27 19:20:08 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Labile carbon
Chemical method
Gleysols
Separation method
Soil testing
physical methods
Soil science
Pool
soils
organic carbon
Analytical chemistry
Soil chemistry
fractionation
Radiolabelling
Nuclear method
Property of soil
Organic geochemistry
carbon cycle
Earth science
roots
biogeochemistry
Organic analysis
Analysis method
Plant origin
organic materials
radioactive isotopes
carbon isotopes
characterization
chemical composition
Pulse labelling
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-f1469-cbf534a5d60853382fe3962b92cf30e3bd63d8437d4d865985fd75d1df36dcf73
Notes istex:74818CA22C44EFC693D835021EE1E06C292A7FF7
ArticleID:EJSS669
ark:/67375/WNG-BQHQ2L7S-Q
PageCount 13
ParticipantIDs pascalfrancis_primary_16748628
wiley_primary_10_1111_j_1365_2389_2004_00669_x_EJSS669
istex_primary_ark_67375_WNG_BQHQ2L7S_Q
fao_agris_US201301001552
PublicationCentury 2000
PublicationDate June 2005
PublicationDateYYYYMMDD 2005-06-01
PublicationDate_xml – month: 06
  year: 2005
  text: June 2005
PublicationDecade 2000
PublicationPlace Oxford, UK; Malden, USA
PublicationPlace_xml – name: Oxford, UK; Malden, USA
– name: Oxford
PublicationTitle European journal of soil science
PublicationYear 2005
Publisher Blackwell Science Ltd
Blackwell Science
Publisher_xml – name: Blackwell Science Ltd
– name: Blackwell Science
References Vance, E.D., Brookes, P.C. & Jenkinson, D.S. 1987. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 19, 703-707.DOI: 10.1016/0038-0717(87)90052-6
Collins, H.P., Elliott, E.T., Paustian, K., Bundy, L.G., Dick, W.A. & Huggins, D.R. et al. 2000. Soil carbon pools and fluxes in long-term corn belt agroecosystems. Soil Biology and Biochemistry, 32, 157-168.
Cheshire, M.V., Sparling, G.P. & Mundie, C.M. 1983. Effect of periodate treatment of soil on carbohydrate constituents and soil aggregation. Journal of Soil Science, 34, 105-112.
Sparling, G.P., Hart, P.B.S., Feltham, C.W., August, J.A. & Searle, P.A. 1991 Simple Methods to produce Dual Labelled (14C and 15N) Ryegrass and to estimate 14C in Soils, Plants and Microbial Biomass. Land Resources Technical Record No 77, Department of Scientific and Industrial Research, Lower Hutt, New Zealand.
Golchin, A., Oades, J.M., Skjemstad, J.O. & Clarke, P. 1994. Study of free and occluded particulate organic matter in soils by solid state 13C CP/MAS NMR spectroscopy and scanning electron microscopy. Australian Journal of Soil Research, 32, 285-309.DOI: 10.1071/SR9940285
Bhupinderpal-Singh, , Hedley, M.J., Saggar, S. & Francis, G.S. 2004. Chemical fractionation to characterize changes in sulphur and carbon in soil caused by management. European Journal of Soil Science, 55, 79-90.
Martel, Y.A. & Paul, E.A. 1974. Effects of cultivation on the organic matter of grassland soils as determined by fractionation and radiocarbon dating. Canadian Journal of Soil Science, 54, 419-426.
Martin, J.P., Haider, K. & Kassim, G. 1980. Biodegradation and stabilization after 2 years of specific crop, lignin, and polysaccharide carbons in soils. Soil Science Society of America Journal, 44, 1250-1255.
Jenkinson, D.S. 1977a. Studies on the decomposition of plant material in soil. IV. The effect of rate of addition. Journal of Soil Science, 28, 417-423.
Skjemstad, J.O., Dalal, R.C. & Barron, P.F. 1986. Spectroscopic investigations of cultivation effects on organic matter of Vertisols. Soil Science Society of America Journal, 50, 354-359.
Christensen, B.T. 1992. Physical fractionation of soil and organic matter in primary particle size and density separates. Advances in Soil Science, 20, 1-90.
Almendros, G., Martin, F. & Gonzalez-Vila, F.J. 1987. Depolymerization and degradation of humic acids with sodium perborate. Geoderma, 39, 235-247.DOI: 10.1016/0016-7061(87)90004-8
Lerch, R.N., Azari, P., Barbarick, K.A., Sommers, L.E. & Westfall, D.G. 1993. Sewage sludge proteins. II. Extract characterization. Journal of Environmental Quality, 22, 625-629.
Magid, J., Jensen, L.S., Mueller, T. & Nielsen, N.E. 1997. Size-density fractionation for in situ measurements of rape straw decomposition - an alternative to the litterbag approach? Soil Biology and Biochemistry, 29, 1125-1133.DOI: 10.1016/S0038-0717(96)00306-9
Janzen, H.H., Campbell, C.A., Brandt, S.A., Lafond, G.P. & Townley-Smith, L. 1992. Light-fraction organic matter in soils from long-term crop rotations. Soil Science Society of America Journal, 56, 1799-1806.
Murata, T. & Goh, K.M. 1997. Effects of cropping systems on soil organic matter in a pair of conventional and biodynamic mixed cropping farms in Canterbury, New Zealand. Biology and Fertility of Soils, 25, 372-381.DOI: 10.1007/s003740050328
Magid, J., Gorissen, A. & Giller, K.E. 1996. In search of the elusive 'active' fraction of soil organic matter: three size-density fractionation methods for tracing the fate of homogeneously 14C-labelled plant materials. Soil Biology and Biochemistry, 28, 89-99.DOI: 10.1016/0038-0717(95)00111-5
Swinnen, J., Van Veen, J.A. & Merckx, R. 1994. 14C pulse-labelling of field-grown spring wheat: an evaluation of its use in rhizosphere carbon budget estimations. Soil Biology and Biochemistry, 26, 161-170.DOI: 10.1016/0038-0717(94)90159-7
Boone, R.D. 1994. Light-fraction soil organic matter: origin and contribution to net nitrogen mineralization. Soil Biology and Biochemistry, 26, 1459-1468.
Cheshire, M.V. & Mundie, C.M. 1966. The hydrolytic extraction of carbohydrates from soil by sulphuric acid. Journal of Soil Science, 17, 372-381.
Saggar, S., Parshotam, A., Sparling, G.P., Feltham, C.W. & Hart, P.B.S. 1996. 14C-labelled ryegrass turnover and residence times in soils varying in clay content and mineralogy. Soil Biology and Biochemistry, 28, 1677-1686.DOI: 10.1016/S0038-0717(96)00250-7
Jenkinson, D.S. 1977b. Studies on the decomposition of plant material in soil. V. The effects of plant cover and soil type on the loss of carbon from 14C labelled ryegrass decomposing under field conditions. Journal of Soil Science, 28, 424-434.
Gregorich, E.G., Kachanoski, R.G. & Voroney, R.P. 1988. Ultrasonic dispersion of aggregates: distribution of organic matter in size fractions. Canadian Journal of Soil Science, 68, 395-403.
Parton, W.J., Stewart, J.W.B. & Cole, C.V. 1988. Dynamics of C, N, P, and S in grassland soils: a model. Biogeochemistry, 5, 109-131.
Buyanovsky, G.A., Aslam, M. & Wagner, G.H. 1994. Carbon turnover in soil physical fractions. Soil Science Society of America Journal, 58, 1167-1173.
Hassink, J. 1995. Density fractions of macroorganic matter and microbial biomass as predictors of C and N mineralization. Soil Biology and Biochemistry, 27, 1099-1108.DOI: 10.1016/0038-0717(95)00027-C
1966; 17
1974; 54
1986; 50
1993; 22
1997; 25
1980; 44
1997
1997; 29
1994; 26
1991
1987; 19
1992; 56
1977a; 28
1987; 39
1978
1983; 34
2004; 55
1996; 28
1977b; 28
1995; 27
2000; 32
1988; 5
1987
1994; 58
1988; 68
1992; 20
1994; 32
1989
References_xml – start-page: 65
  year: 1978
  end-page: 93
– volume: 19
  start-page: 703
  year: 1987
  end-page: 707
  article-title: An extraction method for measuring soil microbial biomass C
  publication-title: Soil Biology and Biochemistry
– volume: 26
  start-page: 161
  year: 1994
  end-page: 170
  article-title: C pulse‐labelling of field‐grown spring wheat: an evaluation of its use in rhizosphere carbon budget estimations
  publication-title: Soil Biology and Biochemistry
– start-page: 93
  year: 1987
  end-page: 105
– volume: 28
  start-page: 424
  year: 1977b
  end-page: 434
  article-title: Studies on the decomposition of plant material in soil. V. The effects of plant cover and soil type on the loss of carbon from C labelled ryegrass decomposing under field conditions
  publication-title: Journal of Soil Science
– volume: 5
  start-page: 109
  year: 1988
  end-page: 131
  article-title: Dynamics of C, N, P, and S in grassland soils: a model
  publication-title: Biogeochemistry
– volume: 17
  start-page: 372
  year: 1966
  end-page: 381
  article-title: The hydrolytic extraction of carbohydrates from soil by sulphuric acid
  publication-title: Journal of Soil Science
– volume: 56
  start-page: 1799
  year: 1992
  end-page: 1806
  article-title: Light‐fraction organic matter in soils from long‐term crop rotations
  publication-title: Soil Science Society of America Journal
– volume: 44
  start-page: 1250
  year: 1980
  end-page: 1255
  article-title: Biodegradation and stabilization after 2 years of specific crop, lignin, and polysaccharide carbons in soils
  publication-title: Soil Science Society of America Journal
– volume: 28
  start-page: 89
  year: 1996
  end-page: 99
  article-title: In search of the elusive ‘active’ fraction of soil organic matter: three size‐density fractionation methods for tracing the fate of homogeneously C‐labelled plant materials
  publication-title: Soil Biology and Biochemistry
– volume: 29
  start-page: 1125
  year: 1997
  end-page: 1133
  article-title: Size‐density fractionation for measurements of rape straw decomposition – an alternative to the litterbag approach?
  publication-title: Soil Biology and Biochemistry
– volume: 25
  start-page: 372
  year: 1997
  end-page: 381
  article-title: Effects of cropping systems on soil organic matter in a pair of conventional and biodynamic mixed cropping farms in Canterbury, New Zealand
  publication-title: Biology and Fertility of Soils
– volume: 32
  start-page: 285
  year: 1994
  end-page: 309
  article-title: Study of free and occluded particulate organic matter in soils by solid state C CP/MAS NMR spectroscopy and scanning electron microscopy
  publication-title: Australian Journal of Soil Research
– volume: 50
  start-page: 354
  year: 1986
  end-page: 359
  article-title: Spectroscopic investigations of cultivation effects on organic matter of Vertisols
  publication-title: Soil Science Society of America Journal
– volume: 55
  start-page: 79
  year: 2004
  end-page: 90
  article-title: Chemical fractionation to characterize changes in sulphur and carbon in soil caused by management
  publication-title: European Journal of Soil Science
– start-page: 173
  year: 1989
  end-page: 199
– volume: 27
  start-page: 1099
  year: 1995
  end-page: 1108
  article-title: Density fractions of macroorganic matter and microbial biomass as predictors of C and N mineralization
  publication-title: Soil Biology and Biochemistry
– volume: 34
  start-page: 105
  year: 1983
  end-page: 112
  article-title: Effect of periodate treatment of soil on carbohydrate constituents and soil aggregation
  publication-title: Journal of Soil Science
– volume: 68
  start-page: 395
  year: 1988
  end-page: 403
  article-title: Ultrasonic dispersion of aggregates: distribution of organic matter in size fractions
  publication-title: Canadian Journal of Soil Science
– volume: 28
  start-page: 417
  year: 1977a
  end-page: 423
  article-title: Studies on the decomposition of plant material in soil. IV. The effect of rate of addition
  publication-title: Journal of Soil Science
– volume: 58
  start-page: 1167
  year: 1994
  end-page: 1173
  article-title: Carbon turnover in soil physical fractions
  publication-title: Soil Science Society of America Journal
– volume: 32
  start-page: 157
  year: 2000
  end-page: 168
  article-title: Soil carbon pools and fluxes in long‐term corn belt agroecosystems
  publication-title: Soil Biology and Biochemistry
– volume: 20
  start-page: 1
  year: 1992
  end-page: 90
  article-title: Physical fractionation of soil and organic matter in primary particle size and density separates
  publication-title: Advances in Soil Science
– volume: 28
  start-page: 1677
  year: 1996
  end-page: 1686
  article-title: C‐labelled ryegrass turnover and residence times in soils varying in clay content and mineralogy
  publication-title: Soil Biology and Biochemistry
– year: 1991
– volume: 39
  start-page: 235
  year: 1987
  end-page: 247
  article-title: Depolymerization and degradation of humic acids with sodium perborate
  publication-title: Geoderma
– volume: 26
  start-page: 1459
  year: 1994
  end-page: 1468
  article-title: Light‐fraction soil organic matter: origin and contribution to net nitrogen mineralization
  publication-title: Soil Biology and Biochemistry
– start-page: 51
  year: 1997
  end-page: 72
– volume: 22
  start-page: 625
  year: 1993
  end-page: 629
  article-title: Sewage sludge proteins. II. Extract characterization
  publication-title: Journal of Environmental Quality
– volume: 54
  start-page: 419
  year: 1974
  end-page: 426
  article-title: Effects of cultivation on the organic matter of grassland soils as determined by fractionation and radiocarbon dating
  publication-title: Canadian Journal of Soil Science
SSID ssj0013199
Score 1.7623395
Snippet Summary The inability of physical and chemical techniques to separate soil organic matter into fractions that have distinct turnover rates has hampered our...
SourceID pascalfrancis
wiley
istex
fao
SourceType Index Database
Publisher
StartPage 329
SubjectTerms Agronomy. Soil science and plant productions
Biological and medical sciences
carbon
Chemical, physicochemical, biochemical and biological properties
Earth sciences
Earth, ocean, space
Exact sciences and technology
fractionation
Fundamental and applied biological sciences. Psychology
Geochemistry
Organic matter
Physics, chemistry, biochemistry and biology of agricultural and forest soils
roots
Soil and rock geochemistry
soil nutrient dynamics
soil organic matter
Soil science
Soils
Surficial geology
Title Characterization of recently 14C pulse-labelled carbon from roots by fractionation of soil organic matter
URI https://api.istex.fr/ark:/67375/WNG-BQHQ2L7S-Q/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2389.2004.00669.x
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BThsxELVKTuUApQURaCMfKm5bsbbX6z1CGhqhCjVaUHuz7PUaoYQEZYkUbnwC38iXMGOniSJxQtx2tbal9Xg8b-yZN4R8d1ICiBc2scIXiWDegUqZLHGyMF4JVaUMc4f7ZX7xT_3sIU3O-f9cmMgPsTxwQ80I-zUquLHNupKHCC2wuMHNwwgtWfxAPAlOQ8jm4H9WFwqxlCTWo0vASor1oJ5XBwJr480EQCvO9xyDJk0D8-ZjwYt1MBus0dn2e_7HJ7K1wKT0JC6iHfKhHn8mmyfX0wUvR_2FDLtLYueYt0knnsJmCSZr9EBT0aV3MzCyz49PsKrwLsDRykwttMP8FQrw_L6h9gHeYiLFcoxmcjOisbRURW8D2ecuuTrrXXb7yaJOQ-Jhny2SyvqMC5M5CfgNXF7ma15IZgtWeX5cc-skd0rw3AmnZFaozLs8c6nzXLrK53yPtMaTcb1PqFWqqlNfOyTmK3hlOLhzXnCWGydZKtpkH2SiDcxAo69KhveuaeSRa5OjICh9F2k6tJkOMWotz_Tfi1_6dNAfsN95qQdt0lmT5LIDJmSAg6faRAaBrT6sHCUQlUZRYflOoYOo9Fz3zssSng7e2vGQfAyUsOF05ytp3U9n9Tey0bhZJyzjFzBN8EY
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NTtwwEB619ND20NIfxBZKfUDcUjW24zhHul26LcuKVUDtzXLiGCHoLtqwEtz6CDwjT9IZe7urlThVvSVKHCmeGc839sw3ALtOKQTxskoq6YtEcu_QpGyWOFVYr6WuU061w_0yH_7UX3pEk3P4txYm8kMsNtzIMsJ6TQZOG9KrVh5StNDlhjiPUrRU8REB5ROpUC-pnkMcL48UYjNJ6kiXoJ-Uq2k9D34J_Y23E4StNOM3lDZpW5w5H1terMLZ4I8OXv7XP1mHF3NYyvajHr2CR834NTzfP5vOqTmaN3DRXXA7x9JNNvEM10v0Wpe3LJVddjVDP3v_-w4Vi44DHKvttML3qISFIUK_bll1i3exlmLxjXZyfslid6ma_Qp8n2_h9KB30u0n81YNiceltkjqymdC2swphHAY9XLfiELxquC1F58aUTklnJYid9JplRU68y7PXOq8UK72udiAtfFk3GwCq7Sum9Q3jrj5ClFbgRGdl4Ln1imeyg5solCMxRlozWnJ6eg1jVRyHdgLkjJXkanD2OkFJa7lmfkx_Go-j_ojPshLM-rAzoooFwOoJgNjPN0BFSS2fLCMlVBUhkRFHTylCaIyN6b3vSzx6t2_DvwAT_snRwMz-DY83IJngSE2bPZsw9r1dNa8h8etm-0Enf4DdV30bg
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbhMxELagSAgOLX9V05biA-K2iLW9Xu-xTRNCqaJGSwU3y7uzrqqWJMo2UnvjEXjGPkln7JAoEifEbVdrW1qPx_ONPfMNY-9BawTxqkoq5YtECQ-oUi5LQBfOG2XqVFDu8KDMhz_McY9ock7-5MJEfojlgRtpRtivScGn4NeVPERoocUNbh5FaOniI-LJJwpROfHoS3m2ulGItSSpIF2CZlKtR_X8dSQ0N95NELXShN9S1KRrceJ8rHixjmaDOepv_c8fecE2F6CUH8ZV9JI9asav2PPDi9mCmKN5za66S2bnmLjJJ57jbok26_qOp6rLp3O0sve_fuOyossA4LWbVdiOElg44vOblld3-BYzKZZjtJPLax5rS9X8Z2D7fMPO-71v3UGyKNSQeNxoi6SufCaVy0AjgEOfV_hGFlpUhai9_NTICrQEo2QOCozOCpN5yDNIwUsNtc_lNtsYT8bNDuOVMXWT-gaIma-QtZPoz3klRe5Ai1R12A7KxDqcgdael4IuXtNIJNdhH4Kg7DTydFg3u6KwtTyz34ef7dFoMBKneWlHHXawJsllB8rIQA_PdJgOAlt9WHlKKCpLoqL6ncoGUdlb2zspS3za_deO79jTs-O-Pf0y_LrHngV62HDSs882bmbz5i173ML8IKzoB3aX8xQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterization+of+recently+14C+pulse%E2%80%90labelled+carbon+from+roots+by+fractionation+of+soil+organic+matter&rft.jtitle=European+journal+of+soil+science&rft.au=Bhupinderpal%E2%80%90Singh&rft.au=Hedley%2C+M.+J.&rft.au=Saggar%2C+S.&rft.date=2005-06-01&rft.pub=Blackwell+Science+Ltd&rft.issn=1351-0754&rft.eissn=1365-2389&rft.volume=56&rft.issue=3&rft.spage=329&rft.epage=341&rft_id=info:doi/10.1111%2Fj.1365-2389.2004.00669.x&rft.externalDBID=10.1111%252Fj.1365-2389.2004.00669.x&rft.externalDocID=EJSS669
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1351-0754&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1351-0754&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1351-0754&client=summon