Characterization of recently 14C pulse-labelled carbon from roots by fractionation of soil organic matter
Summary The inability of physical and chemical techniques to separate soil organic matter into fractions that have distinct turnover rates has hampered our understanding of carbon (C) and nutrient dynamics in soil. A series of soil organic matter fractionation techniques (chemical and physical) were...
Saved in:
Published in: | European journal of soil science Vol. 56; no. 3; pp. 329 - 341 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Oxford, UK; Malden, USA
Blackwell Science Ltd
01-06-2005
Blackwell Science |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Summary
The inability of physical and chemical techniques to separate soil organic matter into fractions that have distinct turnover rates has hampered our understanding of carbon (C) and nutrient dynamics in soil. A series of soil organic matter fractionation techniques (chemical and physical) were evaluated for their ability to distinguish a potentially labile C pool, that is ‘recent’ root and root‐derived soil C. ‘Recent’ root and root‐derived C was operationally defined as root and soil C labelled by 14CO2 pulse labelling of rye grass–clover pasture growing on undisturbed cores of soil. Most (50–94%) of total soil + root 14C activity was recovered in roots.
Sequential extraction of the soil + roots with resin, 0.1 m NaOH and 1 m NaOH allocated ‘recent’ soil + root 14C to all fractions including the alkali‐insoluble residual fraction. Approximately 50% was measured in the alkali‐insoluble residue but specific activity was greater in the resin and 1 m NaOH fractions. Hot 0.5 m H2SO4 hydrolysed 80% of the 14C in the alkali‐insoluble residue of soil + roots but this diminished specific activity by recovering much non‐14C organic matter. Pre‐alkali extraction treatment with 30% H2O2 and post‐alkali treatment extractions with hot 1 m HNO3 removed organic matter with a large 14C specific activity from the alkali‐insoluble residue.
Density separation failed to isolate a significant pool of ‘recent’ root‐derived 14C. The density separation of 14C‐labelled roots, and roots remixed with non‐radioactive soil, showed that the adhesion of soil particles to young 14C‐labelled roots was the likely cause of the greater proportion of 14C in the heavy fraction.
Simple chemical or density fractionations of C appear unsuitable for characterizing ‘recent’ root‐derived C into fractions that can be designated labile C (short turnover time). |
---|---|
AbstractList | Summary
The inability of physical and chemical techniques to separate soil organic matter into fractions that have distinct turnover rates has hampered our understanding of carbon (C) and nutrient dynamics in soil. A series of soil organic matter fractionation techniques (chemical and physical) were evaluated for their ability to distinguish a potentially labile C pool, that is ‘recent’ root and root‐derived soil C. ‘Recent’ root and root‐derived C was operationally defined as root and soil C labelled by 14CO2 pulse labelling of rye grass–clover pasture growing on undisturbed cores of soil. Most (50–94%) of total soil + root 14C activity was recovered in roots.
Sequential extraction of the soil + roots with resin, 0.1 m NaOH and 1 m NaOH allocated ‘recent’ soil + root 14C to all fractions including the alkali‐insoluble residual fraction. Approximately 50% was measured in the alkali‐insoluble residue but specific activity was greater in the resin and 1 m NaOH fractions. Hot 0.5 m H2SO4 hydrolysed 80% of the 14C in the alkali‐insoluble residue of soil + roots but this diminished specific activity by recovering much non‐14C organic matter. Pre‐alkali extraction treatment with 30% H2O2 and post‐alkali treatment extractions with hot 1 m HNO3 removed organic matter with a large 14C specific activity from the alkali‐insoluble residue.
Density separation failed to isolate a significant pool of ‘recent’ root‐derived 14C. The density separation of 14C‐labelled roots, and roots remixed with non‐radioactive soil, showed that the adhesion of soil particles to young 14C‐labelled roots was the likely cause of the greater proportion of 14C in the heavy fraction.
Simple chemical or density fractionations of C appear unsuitable for characterizing ‘recent’ root‐derived C into fractions that can be designated labile C (short turnover time). |
Author | Bhupinderpal-Singh Hedley, M.J Saggar, S |
Author_xml | – sequence: 1 fullname: Bhupinderpal-Singh – sequence: 2 fullname: Hedley, M.J – sequence: 3 fullname: Saggar, S |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16748628$$DView record in Pascal Francis |
BookMark | eNpFkctOwzAQRS1UJFrgG_CGZYIfsZMsWEAFFFSBqlKxtBw_iksaV04QLV-PQ1HxxjOae49Gd0Zg0PjGAAAxSnF8V6sUU84SQosyJQhlKUKcl-n2CAwPg0FfM5ygnGUnYNS2K4QwxWU5BG78LoNUnQnuW3bON9BbGIwyTVfvIM7GcPNZtyapZWXq2mioZKiiyga_hsH7roXVLnYREc0HQutdDX1YysYpuJZd5J-BYysj6vzvPwWL-7vX8SSZvjw8jm-micUZLxNVWUYzyTRHBaO0INbQkpOqJMpSZGilOdVFRnOd6YKzsmBW50xjbSnXyub0FFzuuRvZKlnH1RrlWrEJbi3DTmCeZwUnRdRd73Vfrja7_zkSfa5iJfr4RB-f6HMVv7mKrbh7ms9jFf3J3u_azmwPfhk-BM9pzsTb84O4nU1mZJrPxSzqL_Z6K72QyxB3WsxJvAPC8RqMEfoDOTSJhA |
ContentType | Journal Article |
Copyright | 2005 INIST-CNRS |
Copyright_xml | – notice: 2005 INIST-CNRS |
DBID | FBQ BSCLL IQODW |
DOI | 10.1111/j.1365-2389.2004.00669.x |
DatabaseName | AGRIS Istex Pascal-Francis |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1365-2389 |
EndPage | 341 |
ExternalDocumentID | 16748628 EJSS669 ark_67375_WNG_BQHQ2L7S_Q US201301001552 |
Genre | article |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29G 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAYJJ AAZKR ABCQN ABCUV ABEML ABHUG ABJNI ABOGM ABPTK ABPVW ABWRO ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACPOU ACPRK ACSCC ACSMX ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AHEFC AI. AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DC6 DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 FBQ FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HVGLF HZI HZ~ IHE IX1 J0M LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NHB O66 O9- OVD P2P P2W P2X P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI TWZ UB1 VH1 W8V W99 WBKPD WIH WIK WOHZO WQJ WRC WUPDE WXSBR WYISQ XG1 XOL Y6R ZZTAW ~02 ~IA ~KM ~WT AAHBH AHBTC AITYG BSCLL HGLYW OIG 08R AAPBV IQODW |
ID | FETCH-LOGICAL-f1469-cbf534a5d60853382fe3962b92cf30e3bd63d8437d4d865985fd75d1df36dcf73 |
IEDL.DBID | 33P |
ISSN | 1351-0754 |
IngestDate | Sun Oct 22 16:05:13 EDT 2023 Sat Aug 24 00:38:49 EDT 2024 Wed Oct 30 09:52:28 EDT 2024 Wed Dec 27 19:20:08 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Labile carbon Chemical method Gleysols Separation method Soil testing physical methods Soil science Pool soils organic carbon Analytical chemistry Soil chemistry fractionation Radiolabelling Nuclear method Property of soil Organic geochemistry carbon cycle Earth science roots biogeochemistry Organic analysis Analysis method Plant origin organic materials radioactive isotopes carbon isotopes characterization chemical composition Pulse labelling |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-f1469-cbf534a5d60853382fe3962b92cf30e3bd63d8437d4d865985fd75d1df36dcf73 |
Notes | istex:74818CA22C44EFC693D835021EE1E06C292A7FF7 ArticleID:EJSS669 ark:/67375/WNG-BQHQ2L7S-Q |
PageCount | 13 |
ParticipantIDs | pascalfrancis_primary_16748628 wiley_primary_10_1111_j_1365_2389_2004_00669_x_EJSS669 istex_primary_ark_67375_WNG_BQHQ2L7S_Q fao_agris_US201301001552 |
PublicationCentury | 2000 |
PublicationDate | June 2005 |
PublicationDateYYYYMMDD | 2005-06-01 |
PublicationDate_xml | – month: 06 year: 2005 text: June 2005 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK; Malden, USA |
PublicationPlace_xml | – name: Oxford, UK; Malden, USA – name: Oxford |
PublicationTitle | European journal of soil science |
PublicationYear | 2005 |
Publisher | Blackwell Science Ltd Blackwell Science |
Publisher_xml | – name: Blackwell Science Ltd – name: Blackwell Science |
References | Vance, E.D., Brookes, P.C. & Jenkinson, D.S. 1987. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 19, 703-707.DOI: 10.1016/0038-0717(87)90052-6 Collins, H.P., Elliott, E.T., Paustian, K., Bundy, L.G., Dick, W.A. & Huggins, D.R. et al. 2000. Soil carbon pools and fluxes in long-term corn belt agroecosystems. Soil Biology and Biochemistry, 32, 157-168. Cheshire, M.V., Sparling, G.P. & Mundie, C.M. 1983. Effect of periodate treatment of soil on carbohydrate constituents and soil aggregation. Journal of Soil Science, 34, 105-112. Sparling, G.P., Hart, P.B.S., Feltham, C.W., August, J.A. & Searle, P.A. 1991 Simple Methods to produce Dual Labelled (14C and 15N) Ryegrass and to estimate 14C in Soils, Plants and Microbial Biomass. Land Resources Technical Record No 77, Department of Scientific and Industrial Research, Lower Hutt, New Zealand. Golchin, A., Oades, J.M., Skjemstad, J.O. & Clarke, P. 1994. Study of free and occluded particulate organic matter in soils by solid state 13C CP/MAS NMR spectroscopy and scanning electron microscopy. Australian Journal of Soil Research, 32, 285-309.DOI: 10.1071/SR9940285 Bhupinderpal-Singh, , Hedley, M.J., Saggar, S. & Francis, G.S. 2004. Chemical fractionation to characterize changes in sulphur and carbon in soil caused by management. European Journal of Soil Science, 55, 79-90. Martel, Y.A. & Paul, E.A. 1974. Effects of cultivation on the organic matter of grassland soils as determined by fractionation and radiocarbon dating. Canadian Journal of Soil Science, 54, 419-426. Martin, J.P., Haider, K. & Kassim, G. 1980. Biodegradation and stabilization after 2 years of specific crop, lignin, and polysaccharide carbons in soils. Soil Science Society of America Journal, 44, 1250-1255. Jenkinson, D.S. 1977a. Studies on the decomposition of plant material in soil. IV. The effect of rate of addition. Journal of Soil Science, 28, 417-423. Skjemstad, J.O., Dalal, R.C. & Barron, P.F. 1986. Spectroscopic investigations of cultivation effects on organic matter of Vertisols. Soil Science Society of America Journal, 50, 354-359. Christensen, B.T. 1992. Physical fractionation of soil and organic matter in primary particle size and density separates. Advances in Soil Science, 20, 1-90. Almendros, G., Martin, F. & Gonzalez-Vila, F.J. 1987. Depolymerization and degradation of humic acids with sodium perborate. Geoderma, 39, 235-247.DOI: 10.1016/0016-7061(87)90004-8 Lerch, R.N., Azari, P., Barbarick, K.A., Sommers, L.E. & Westfall, D.G. 1993. Sewage sludge proteins. II. Extract characterization. Journal of Environmental Quality, 22, 625-629. Magid, J., Jensen, L.S., Mueller, T. & Nielsen, N.E. 1997. Size-density fractionation for in situ measurements of rape straw decomposition - an alternative to the litterbag approach? Soil Biology and Biochemistry, 29, 1125-1133.DOI: 10.1016/S0038-0717(96)00306-9 Janzen, H.H., Campbell, C.A., Brandt, S.A., Lafond, G.P. & Townley-Smith, L. 1992. Light-fraction organic matter in soils from long-term crop rotations. Soil Science Society of America Journal, 56, 1799-1806. Murata, T. & Goh, K.M. 1997. Effects of cropping systems on soil organic matter in a pair of conventional and biodynamic mixed cropping farms in Canterbury, New Zealand. Biology and Fertility of Soils, 25, 372-381.DOI: 10.1007/s003740050328 Magid, J., Gorissen, A. & Giller, K.E. 1996. In search of the elusive 'active' fraction of soil organic matter: three size-density fractionation methods for tracing the fate of homogeneously 14C-labelled plant materials. Soil Biology and Biochemistry, 28, 89-99.DOI: 10.1016/0038-0717(95)00111-5 Swinnen, J., Van Veen, J.A. & Merckx, R. 1994. 14C pulse-labelling of field-grown spring wheat: an evaluation of its use in rhizosphere carbon budget estimations. Soil Biology and Biochemistry, 26, 161-170.DOI: 10.1016/0038-0717(94)90159-7 Boone, R.D. 1994. Light-fraction soil organic matter: origin and contribution to net nitrogen mineralization. Soil Biology and Biochemistry, 26, 1459-1468. Cheshire, M.V. & Mundie, C.M. 1966. The hydrolytic extraction of carbohydrates from soil by sulphuric acid. Journal of Soil Science, 17, 372-381. Saggar, S., Parshotam, A., Sparling, G.P., Feltham, C.W. & Hart, P.B.S. 1996. 14C-labelled ryegrass turnover and residence times in soils varying in clay content and mineralogy. Soil Biology and Biochemistry, 28, 1677-1686.DOI: 10.1016/S0038-0717(96)00250-7 Jenkinson, D.S. 1977b. Studies on the decomposition of plant material in soil. V. The effects of plant cover and soil type on the loss of carbon from 14C labelled ryegrass decomposing under field conditions. Journal of Soil Science, 28, 424-434. Gregorich, E.G., Kachanoski, R.G. & Voroney, R.P. 1988. Ultrasonic dispersion of aggregates: distribution of organic matter in size fractions. Canadian Journal of Soil Science, 68, 395-403. Parton, W.J., Stewart, J.W.B. & Cole, C.V. 1988. Dynamics of C, N, P, and S in grassland soils: a model. Biogeochemistry, 5, 109-131. Buyanovsky, G.A., Aslam, M. & Wagner, G.H. 1994. Carbon turnover in soil physical fractions. Soil Science Society of America Journal, 58, 1167-1173. Hassink, J. 1995. Density fractions of macroorganic matter and microbial biomass as predictors of C and N mineralization. Soil Biology and Biochemistry, 27, 1099-1108.DOI: 10.1016/0038-0717(95)00027-C 1966; 17 1974; 54 1986; 50 1993; 22 1997; 25 1980; 44 1997 1997; 29 1994; 26 1991 1987; 19 1992; 56 1977a; 28 1987; 39 1978 1983; 34 2004; 55 1996; 28 1977b; 28 1995; 27 2000; 32 1988; 5 1987 1994; 58 1988; 68 1992; 20 1994; 32 1989 |
References_xml | – start-page: 65 year: 1978 end-page: 93 – volume: 19 start-page: 703 year: 1987 end-page: 707 article-title: An extraction method for measuring soil microbial biomass C publication-title: Soil Biology and Biochemistry – volume: 26 start-page: 161 year: 1994 end-page: 170 article-title: C pulse‐labelling of field‐grown spring wheat: an evaluation of its use in rhizosphere carbon budget estimations publication-title: Soil Biology and Biochemistry – start-page: 93 year: 1987 end-page: 105 – volume: 28 start-page: 424 year: 1977b end-page: 434 article-title: Studies on the decomposition of plant material in soil. V. The effects of plant cover and soil type on the loss of carbon from C labelled ryegrass decomposing under field conditions publication-title: Journal of Soil Science – volume: 5 start-page: 109 year: 1988 end-page: 131 article-title: Dynamics of C, N, P, and S in grassland soils: a model publication-title: Biogeochemistry – volume: 17 start-page: 372 year: 1966 end-page: 381 article-title: The hydrolytic extraction of carbohydrates from soil by sulphuric acid publication-title: Journal of Soil Science – volume: 56 start-page: 1799 year: 1992 end-page: 1806 article-title: Light‐fraction organic matter in soils from long‐term crop rotations publication-title: Soil Science Society of America Journal – volume: 44 start-page: 1250 year: 1980 end-page: 1255 article-title: Biodegradation and stabilization after 2 years of specific crop, lignin, and polysaccharide carbons in soils publication-title: Soil Science Society of America Journal – volume: 28 start-page: 89 year: 1996 end-page: 99 article-title: In search of the elusive ‘active’ fraction of soil organic matter: three size‐density fractionation methods for tracing the fate of homogeneously C‐labelled plant materials publication-title: Soil Biology and Biochemistry – volume: 29 start-page: 1125 year: 1997 end-page: 1133 article-title: Size‐density fractionation for measurements of rape straw decomposition – an alternative to the litterbag approach? publication-title: Soil Biology and Biochemistry – volume: 25 start-page: 372 year: 1997 end-page: 381 article-title: Effects of cropping systems on soil organic matter in a pair of conventional and biodynamic mixed cropping farms in Canterbury, New Zealand publication-title: Biology and Fertility of Soils – volume: 32 start-page: 285 year: 1994 end-page: 309 article-title: Study of free and occluded particulate organic matter in soils by solid state C CP/MAS NMR spectroscopy and scanning electron microscopy publication-title: Australian Journal of Soil Research – volume: 50 start-page: 354 year: 1986 end-page: 359 article-title: Spectroscopic investigations of cultivation effects on organic matter of Vertisols publication-title: Soil Science Society of America Journal – volume: 55 start-page: 79 year: 2004 end-page: 90 article-title: Chemical fractionation to characterize changes in sulphur and carbon in soil caused by management publication-title: European Journal of Soil Science – start-page: 173 year: 1989 end-page: 199 – volume: 27 start-page: 1099 year: 1995 end-page: 1108 article-title: Density fractions of macroorganic matter and microbial biomass as predictors of C and N mineralization publication-title: Soil Biology and Biochemistry – volume: 34 start-page: 105 year: 1983 end-page: 112 article-title: Effect of periodate treatment of soil on carbohydrate constituents and soil aggregation publication-title: Journal of Soil Science – volume: 68 start-page: 395 year: 1988 end-page: 403 article-title: Ultrasonic dispersion of aggregates: distribution of organic matter in size fractions publication-title: Canadian Journal of Soil Science – volume: 28 start-page: 417 year: 1977a end-page: 423 article-title: Studies on the decomposition of plant material in soil. IV. The effect of rate of addition publication-title: Journal of Soil Science – volume: 58 start-page: 1167 year: 1994 end-page: 1173 article-title: Carbon turnover in soil physical fractions publication-title: Soil Science Society of America Journal – volume: 32 start-page: 157 year: 2000 end-page: 168 article-title: Soil carbon pools and fluxes in long‐term corn belt agroecosystems publication-title: Soil Biology and Biochemistry – volume: 20 start-page: 1 year: 1992 end-page: 90 article-title: Physical fractionation of soil and organic matter in primary particle size and density separates publication-title: Advances in Soil Science – volume: 28 start-page: 1677 year: 1996 end-page: 1686 article-title: C‐labelled ryegrass turnover and residence times in soils varying in clay content and mineralogy publication-title: Soil Biology and Biochemistry – year: 1991 – volume: 39 start-page: 235 year: 1987 end-page: 247 article-title: Depolymerization and degradation of humic acids with sodium perborate publication-title: Geoderma – volume: 26 start-page: 1459 year: 1994 end-page: 1468 article-title: Light‐fraction soil organic matter: origin and contribution to net nitrogen mineralization publication-title: Soil Biology and Biochemistry – start-page: 51 year: 1997 end-page: 72 – volume: 22 start-page: 625 year: 1993 end-page: 629 article-title: Sewage sludge proteins. II. Extract characterization publication-title: Journal of Environmental Quality – volume: 54 start-page: 419 year: 1974 end-page: 426 article-title: Effects of cultivation on the organic matter of grassland soils as determined by fractionation and radiocarbon dating publication-title: Canadian Journal of Soil Science |
SSID | ssj0013199 |
Score | 1.7623395 |
Snippet | Summary
The inability of physical and chemical techniques to separate soil organic matter into fractions that have distinct turnover rates has hampered our... |
SourceID | pascalfrancis wiley istex fao |
SourceType | Index Database Publisher |
StartPage | 329 |
SubjectTerms | Agronomy. Soil science and plant productions Biological and medical sciences carbon Chemical, physicochemical, biochemical and biological properties Earth sciences Earth, ocean, space Exact sciences and technology fractionation Fundamental and applied biological sciences. Psychology Geochemistry Organic matter Physics, chemistry, biochemistry and biology of agricultural and forest soils roots Soil and rock geochemistry soil nutrient dynamics soil organic matter Soil science Soils Surficial geology |
Title | Characterization of recently 14C pulse-labelled carbon from roots by fractionation of soil organic matter |
URI | https://api.istex.fr/ark:/67375/WNG-BQHQ2L7S-Q/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2389.2004.00669.x |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BThsxELVKTuUApQURaCMfKm5bsbbX6z1CGhqhCjVaUHuz7PUaoYQEZYkUbnwC38iXMGOniSJxQtx2tbal9Xg8b-yZN4R8d1ICiBc2scIXiWDegUqZLHGyMF4JVaUMc4f7ZX7xT_3sIU3O-f9cmMgPsTxwQ80I-zUquLHNupKHCC2wuMHNwwgtWfxAPAlOQ8jm4H9WFwqxlCTWo0vASor1oJ5XBwJr480EQCvO9xyDJk0D8-ZjwYt1MBus0dn2e_7HJ7K1wKT0JC6iHfKhHn8mmyfX0wUvR_2FDLtLYueYt0knnsJmCSZr9EBT0aV3MzCyz49PsKrwLsDRykwttMP8FQrw_L6h9gHeYiLFcoxmcjOisbRURW8D2ecuuTrrXXb7yaJOQ-Jhny2SyvqMC5M5CfgNXF7ma15IZgtWeX5cc-skd0rw3AmnZFaozLs8c6nzXLrK53yPtMaTcb1PqFWqqlNfOyTmK3hlOLhzXnCWGydZKtpkH2SiDcxAo69KhveuaeSRa5OjICh9F2k6tJkOMWotz_Tfi1_6dNAfsN95qQdt0lmT5LIDJmSAg6faRAaBrT6sHCUQlUZRYflOoYOo9Fz3zssSng7e2vGQfAyUsOF05ytp3U9n9Tey0bhZJyzjFzBN8EY |
link.rule.ids | 315,782,786,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NTtwwEB619ND20NIfxBZKfUDcUjW24zhHul26LcuKVUDtzXLiGCHoLtqwEtz6CDwjT9IZe7urlThVvSVKHCmeGc839sw3ALtOKQTxskoq6YtEcu_QpGyWOFVYr6WuU061w_0yH_7UX3pEk3P4txYm8kMsNtzIMsJ6TQZOG9KrVh5StNDlhjiPUrRU8REB5ROpUC-pnkMcL48UYjNJ6kiXoJ-Uq2k9D34J_Y23E4StNOM3lDZpW5w5H1terMLZ4I8OXv7XP1mHF3NYyvajHr2CR834NTzfP5vOqTmaN3DRXXA7x9JNNvEM10v0Wpe3LJVddjVDP3v_-w4Vi44DHKvttML3qISFIUK_bll1i3exlmLxjXZyfslid6ma_Qp8n2_h9KB30u0n81YNiceltkjqymdC2swphHAY9XLfiELxquC1F58aUTklnJYid9JplRU68y7PXOq8UK72udiAtfFk3GwCq7Sum9Q3jrj5ClFbgRGdl4Ln1imeyg5solCMxRlozWnJ6eg1jVRyHdgLkjJXkanD2OkFJa7lmfkx_Go-j_ojPshLM-rAzoooFwOoJgNjPN0BFSS2fLCMlVBUhkRFHTylCaIyN6b3vSzx6t2_DvwAT_snRwMz-DY83IJngSE2bPZsw9r1dNa8h8etm-0Enf4DdV30bg |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbhMxELagSAgOLX9V05biA-K2iLW9Xu-xTRNCqaJGSwU3y7uzrqqWJMo2UnvjEXjGPkln7JAoEifEbVdrW1qPx_ONPfMNY-9BawTxqkoq5YtECQ-oUi5LQBfOG2XqVFDu8KDMhz_McY9ock7-5MJEfojlgRtpRtivScGn4NeVPERoocUNbh5FaOniI-LJJwpROfHoS3m2ulGItSSpIF2CZlKtR_X8dSQ0N95NELXShN9S1KRrceJ8rHixjmaDOepv_c8fecE2F6CUH8ZV9JI9asav2PPDi9mCmKN5za66S2bnmLjJJ57jbok26_qOp6rLp3O0sve_fuOyossA4LWbVdiOElg44vOblld3-BYzKZZjtJPLax5rS9X8Z2D7fMPO-71v3UGyKNSQeNxoi6SufCaVy0AjgEOfV_hGFlpUhai9_NTICrQEo2QOCozOCpN5yDNIwUsNtc_lNtsYT8bNDuOVMXWT-gaIma-QtZPoz3klRe5Ai1R12A7KxDqcgdael4IuXtNIJNdhH4Kg7DTydFg3u6KwtTyz34ef7dFoMBKneWlHHXawJsllB8rIQA_PdJgOAlt9WHlKKCpLoqL6ncoGUdlb2zspS3za_deO79jTs-O-Pf0y_LrHngV62HDSs882bmbz5i173ML8IKzoB3aX8xQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterization+of+recently+14C+pulse%E2%80%90labelled+carbon+from+roots+by+fractionation+of+soil+organic+matter&rft.jtitle=European+journal+of+soil+science&rft.au=Bhupinderpal%E2%80%90Singh&rft.au=Hedley%2C+M.+J.&rft.au=Saggar%2C+S.&rft.date=2005-06-01&rft.pub=Blackwell+Science+Ltd&rft.issn=1351-0754&rft.eissn=1365-2389&rft.volume=56&rft.issue=3&rft.spage=329&rft.epage=341&rft_id=info:doi/10.1111%2Fj.1365-2389.2004.00669.x&rft.externalDBID=10.1111%252Fj.1365-2389.2004.00669.x&rft.externalDocID=EJSS669 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1351-0754&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1351-0754&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1351-0754&client=summon |