Critical behavior of Y-doped Nd0.7Sr0.3MnO3 manganites exhibiting the tricritical point and large magnetocaloric effect

•Tricritical point in Y-doped Nd0.7Sr0.3MnO3 manganites.•A large magnetic-entropy change.•Magnetic inhomogeneity and phase separation. We have determined the values of critical exponents of two polycrystalline samples (Nd1−xYx)0.7Sr0.3MnO3 (x=0 and 0.07) from the magnetization data versus temperatur...

Full description

Saved in:
Bibliographic Details
Published in:Journal of alloys and compounds Vol. 615; pp. 937 - 945
Main Authors: Phan, The-Long, Ho, T.A., Thang, P.D., Tran, Q.T., Thanh, T.D., Phuc, N.X., Phan, M.H., Huy, B.T., Yu, S.C.
Format: Journal Article
Language:English
Published: Kidlington Elsevier B.V 05-12-2014
Elsevier
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:•Tricritical point in Y-doped Nd0.7Sr0.3MnO3 manganites.•A large magnetic-entropy change.•Magnetic inhomogeneity and phase separation. We have determined the values of critical exponents of two polycrystalline samples (Nd1−xYx)0.7Sr0.3MnO3 (x=0 and 0.07) from the magnetization data versus temperature and magnetic field, M(H, T), to learn about their magnetic and magnetocaloric (MC) properties. The results reveal the samples exhibiting the crossover of first-order and second-order phase transitions, where the exponent values β=0.271 and γ=0.922 for x=0, and β=0.234–0.236 and γ=1.044–1.063 for x=0.07 determined by using modified Arrott plots and static-scaling hypothesis are close to those expected for the tricritical mean-field theory (β=0.25 and γ=1.0). Particularly, the TC of x=0 and 0.07 can be any value in the temperature ranges of 240–255K and 170–278K, respectively, depending on the magnitude of applied magnetic field and determination techniques. Around the TC, studying the MC effect of the samples has revealed a large magnetic-entropy change (ΔSm) up to ∼8J/kgK for the applied field interval ΔH=50kOe, corresponding to refrigerant capacity values of 200–245J/kg. These phenomena are related to the crossover nature and the persisting of FM/anti-FM interactions even above the TC, as further confirmed by electron-spin-resonance data, Curie–Weiss law-based analyses, and an exponential parameter characteristic of magnetic order n=dLn|ΔSm|/dLnH.
ISSN:0925-8388
1873-4669
DOI:10.1016/j.jallcom.2014.06.107