Large‐Scale Ultrathin Channel Nanosheet‐Stacked CFET Based on CVD 1L MoS2/WSe2
Nanosheet (NS) vertical‐stacked complementary field‐effect transistors (CFETs), where the NS n‐FET and NS p‐FET are vertically stacked and controlled using a common gate, would result in maximum device footprint reduction. However, silicon‐based transistor will become invalid due to mobility degrada...
Saved in:
Published in: | Advanced electronic materials Vol. 9; no. 2 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Seoul
John Wiley & Sons, Inc
01-02-2023
Wiley-VCH |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Nanosheet (NS) vertical‐stacked complementary field‐effect transistors (CFETs), where the NS n‐FET and NS p‐FET are vertically stacked and controlled using a common gate, would result in maximum device footprint reduction. However, silicon‐based transistor will become invalid due to mobility degradation and leakage current rising when scaling the thickness of channel and dielectric. Here, it is experimentally demonstrated that CFET can scaling down to 1 nm channel thickness with excellent performance, where chemical vapor deposition (CVD) one layer (1L) WSe2 p‐type NS FET is vertically stacked on top of CVD 1L MoS2 n‐type NS FET. Bottom MoS2 NS FET achieves high on‐state current of ION = 3.3 × 10−5 A µm µm−1 and low off‐state current of IOFF = 3.3 × 10−13 A µm µm−1 at VDS = 0.7 V, with the subthreshold swing reaching 80 mV dec−1. Top WSe2 NS FET achieves high on‐state current of ION = 1.2 × 10−5 A µm µm−1 and IOFF = 4 × 10−11 A µm µm−1 at VDS = −0.7 V, while the subthreshold swing reaching 150 mV dec−1. Statistical data of 22 CFET devices demonstrate excellent uniformity toward large‐area applications. The CFET based on large‐scale 2D materials breaks the limit of channel scaling and provides a technological base for future high‐performance and low‐power electronics.
A nanosheet‐stacked complementary FET based on CVD monolayer MoS2/WSe2 is presented. The FET shows high drive current and low leakage current attributed to the GAA structure and 2D semiconductors electrical properties. Statistical data demonstrate excellent uniformity toward large‐area applications. The results break the limit of channel‐scaling, and pave the way for high‐performance and low‐power electronics. |
---|---|
AbstractList | Abstract Nanosheet (NS) vertical‐stacked complementary field‐effect transistors (CFETs), where the NS n‐FET and NS p‐FET are vertically stacked and controlled using a common gate, would result in maximum device footprint reduction. However, silicon‐based transistor will become invalid due to mobility degradation and leakage current rising when scaling the thickness of channel and dielectric. Here, it is experimentally demonstrated that CFET can scaling down to 1 nm channel thickness with excellent performance, where chemical vapor deposition (CVD) one layer (1L) WSe2 p‐type NS FET is vertically stacked on top of CVD 1L MoS2 n‐type NS FET. Bottom MoS2 NS FET achieves high on‐state current of ION = 3.3 × 10−5 A µm µm−1 and low off‐state current of IOFF = 3.3 × 10−13 A µm µm−1 at VDS = 0.7 V, with the subthreshold swing reaching 80 mV dec−1. Top WSe2 NS FET achieves high on‐state current of ION = 1.2 × 10−5 A µm µm−1 and IOFF = 4 × 10−11 A µm µm−1 at VDS = −0.7 V, while the subthreshold swing reaching 150 mV dec−1. Statistical data of 22 CFET devices demonstrate excellent uniformity toward large‐area applications. The CFET based on large‐scale 2D materials breaks the limit of channel scaling and provides a technological base for future high‐performance and low‐power electronics. Nanosheet (NS) vertical‐stacked complementary field‐effect transistors (CFETs), where the NS n‐FET and NS p‐FET are vertically stacked and controlled using a common gate, would result in maximum device footprint reduction. However, silicon‐based transistor will become invalid due to mobility degradation and leakage current rising when scaling the thickness of channel and dielectric. Here, it is experimentally demonstrated that CFET can scaling down to 1 nm channel thickness with excellent performance, where chemical vapor deposition (CVD) one layer (1L) WSe2 p‐type NS FET is vertically stacked on top of CVD 1L MoS2 n‐type NS FET. Bottom MoS2 NS FET achieves high on‐state current of ION = 3.3 × 10−5 A µm µm−1 and low off‐state current of IOFF = 3.3 × 10−13 A µm µm−1 at VDS = 0.7 V, with the subthreshold swing reaching 80 mV dec−1. Top WSe2 NS FET achieves high on‐state current of ION = 1.2 × 10−5 A µm µm−1 and IOFF = 4 × 10−11 A µm µm−1 at VDS = −0.7 V, while the subthreshold swing reaching 150 mV dec−1. Statistical data of 22 CFET devices demonstrate excellent uniformity toward large‐area applications. The CFET based on large‐scale 2D materials breaks the limit of channel scaling and provides a technological base for future high‐performance and low‐power electronics. A nanosheet‐stacked complementary FET based on CVD monolayer MoS2/WSe2 is presented. The FET shows high drive current and low leakage current attributed to the GAA structure and 2D semiconductors electrical properties. Statistical data demonstrate excellent uniformity toward large‐area applications. The results break the limit of channel‐scaling, and pave the way for high‐performance and low‐power electronics. Nanosheet (NS) vertical‐stacked complementary field‐effect transistors (CFETs), where the NS n‐FET and NS p‐FET are vertically stacked and controlled using a common gate, would result in maximum device footprint reduction. However, silicon‐based transistor will become invalid due to mobility degradation and leakage current rising when scaling the thickness of channel and dielectric. Here, it is experimentally demonstrated that CFET can scaling down to 1 nm channel thickness with excellent performance, where chemical vapor deposition (CVD) one layer (1L) WSe2 p‐type NS FET is vertically stacked on top of CVD 1L MoS2 n‐type NS FET. Bottom MoS2 NS FET achieves high on‐state current of ION = 3.3 × 10−5 A µm µm−1 and low off‐state current of IOFF = 3.3 × 10−13 A µm µm−1 at VDS = 0.7 V, with the subthreshold swing reaching 80 mV dec−1. Top WSe2 NS FET achieves high on‐state current of ION = 1.2 × 10−5 A µm µm−1 and IOFF = 4 × 10−11 A µm µm−1 at VDS = −0.7 V, while the subthreshold swing reaching 150 mV dec−1. Statistical data of 22 CFET devices demonstrate excellent uniformity toward large‐area applications. The CFET based on large‐scale 2D materials breaks the limit of channel scaling and provides a technological base for future high‐performance and low‐power electronics. |
Author | Liao, Fuxi Niu, Jiebin Lu, Wendong Li, Ling Yang, Guanhua Liu, Menggan Lu, Congyan Lu, Nianduan Chen, Kaifei |
Author_xml | – sequence: 1 givenname: Menggan orcidid: 0000-0002-9371-1965 surname: Liu fullname: Liu, Menggan organization: University of Chinese Academy of Sciences – sequence: 2 givenname: Jiebin surname: Niu fullname: Niu, Jiebin organization: University of Chinese Academy of Sciences – sequence: 3 givenname: Guanhua orcidid: 0000-0003-4694-7040 surname: Yang fullname: Yang, Guanhua email: yangguanhua@ime.ac.cn organization: Peng Cheng Laboratory – sequence: 4 givenname: Kaifei surname: Chen fullname: Chen, Kaifei organization: University of Chinese Academy of Sciences – sequence: 5 givenname: Wendong surname: Lu fullname: Lu, Wendong organization: Institute of Microelectronics of the Chinese Academy of Sciences – sequence: 6 givenname: Fuxi surname: Liao fullname: Liao, Fuxi organization: Institute of Microelectronics of the Chinese Academy of Sciences – sequence: 7 givenname: Congyan surname: Lu fullname: Lu, Congyan organization: University of Chinese Academy of Sciences – sequence: 8 givenname: Nianduan surname: Lu fullname: Lu, Nianduan organization: University of Chinese Academy of Sciences – sequence: 9 givenname: Ling orcidid: 0000-0002-7622-8752 surname: Li fullname: Li, Ling email: lingli@ime.ac.cn organization: Peng Cheng Laboratory |
BookMark | eNpNkc1OwkAUhSdGExHZum7iGpjfTmeJFZWkaCKi7ibD9ALF0sFpiWHnI_iMPomtGOLqnnvy5dybnDN0XLgCELoguEcwpn0D-bpHMaUYS0qPUIsSpbokxK_H__Qp6pTlCmNMZMi4YC30mBi_gO_Pr4k1OQTTvPKmWmZFEC9NUUAe3JvClUuAqmEqY98gDeKb4VNwZcpaupp8vg5IEozdhPZfJkDP0cnc5CV0_mYbTWs-vusmD7ejeJB0U8YU7UqR0igFAVzMJFchSRuhQglzqazlYi4Ej6yghsmUp8BCJomqATarrdCyNhrtc1NnVnrjs7XxO-1Mpn8N5xfa-CqzOeiIhsoSy4EazC2wGQajQHDFiWSU8Drrcp-18e59C2WlV27ri_p9zbDCSshINpTaUx9ZDrvDSYJ104FuOtCHDvRgmIwPG_sBxgJ7_Q |
ContentType | Journal Article |
Copyright | 2022 The Authors. Advanced Electronic Materials published by Wiley‐VCH GmbH 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. Advanced Electronic Materials published by Wiley‐VCH GmbH – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P WIN JQ2 DOA |
DOI | 10.1002/aelm.202200722 |
DatabaseName | Wiley-Blackwell Open Access Collection Wiley Online Library Free Content ProQuest Computer Science Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | ProQuest Computer Science Collection |
DatabaseTitleList | ProQuest Computer Science Collection |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2199-160X |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_8269c1c4e2a04ce3b0ea9e5494173214 AELM202200722 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 61890944; 61725404; 61874134; 61804170; 61821091; 61888102; 61720106013; 61904195; 61404164; 62004214 – fundername: National Key Research and Development Program funderid: 2018YFA0208503; 2019YFB2205002; 2021YFB3600704 – fundername: Strategic Priority Research Program of Chinese Academy of Sciences funderid: XDB30030000 – fundername: Beijing Training Project for the Leading Talents in S&T funderid: Z151100000315008) – fundername: Opening Project of Key Laboratory of Microelectronic Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences |
GroupedDBID | 0R~ 1OC 24P 33P AAESR AAHHS AAXRX AAZKR ABCUV ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AFBPY AIACR AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ARCSS AVUZU AZVAB BFHJK BMXJE BRXPI DCZOG EBS EJD GODZA GROUPED_DOAJ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI O9- P2W ROL SUPJJ WBKPD WIN WOHZO WXSBR ZZTAW JQ2 |
ID | FETCH-LOGICAL-d3392-75d28de5e45b74961d45b7967ef79cc45f5548c52a37d4de3637197963b2a36c3 |
IEDL.DBID | 33P |
ISSN | 2199-160X |
IngestDate | Tue Oct 22 15:16:06 EDT 2024 Thu Oct 10 22:21:50 EDT 2024 Sat Aug 24 01:07:34 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-d3392-75d28de5e45b74961d45b7967ef79cc45f5548c52a37d4de3637197963b2a36c3 |
ORCID | 0000-0002-9371-1965 0000-0002-7622-8752 0000-0003-4694-7040 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faelm.202200722 |
PQID | 3090957874 |
PQPubID | 6852865 |
PageCount | 7 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8269c1c4e2a04ce3b0ea9e5494173214 proquest_journals_3090957874 wiley_primary_10_1002_aelm_202200722_AELM202200722 |
PublicationCentury | 2000 |
PublicationDate | February 2023 20230201 2023-02-01 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: February 2023 |
PublicationDecade | 2020 |
PublicationPlace | Seoul |
PublicationPlace_xml | – name: Seoul |
PublicationTitle | Advanced electronic materials |
PublicationYear | 2023 |
Publisher | John Wiley & Sons, Inc Wiley-VCH |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley-VCH |
References | 2019; 7 2021; 4 2015; 3 2000; 47 2020; 63 2016; 108 2020; 12 2020; 11 2017; 111 1965; 38 2012; 12 2015; 7 2021; 15 2019; 40 2021; 33 2018; 1 2021 2009; 94 2020 2019 2013; 60 2018 2021; 591 2017 2016 2020; 67 2022; 2 2016; 28 2021; 60 2014; 8 2021; 41 2012; 5 2022; 18 |
References_xml | – start-page: 2.1.1 year: 2021 end-page: 2.1.2 – volume: 12 start-page: 3788 year: 2012 publication-title: Nano Lett. – start-page: 3.3.1 year: 2021 end-page: 3.3.2 – volume: 18 year: 2022 publication-title: Small – volume: 67 start-page: 3504 year: 2020 publication-title: IEEE Trans. Electron Devices – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 4948 year: 2014 publication-title: ACS Nano – start-page: 2.1.1 year: 2020 end-page: 2.1.4 – start-page: 141 year: 2018 – year: 2021 – volume: 47 start-page: 2320 year: 2000 publication-title: IEEE Trans. Electron Devices – volume: 63 year: 2020 publication-title: Sci. China: Phys., Mech. Astron. – start-page: 2.2.1 year: 2020 end-page: 2.2.4 – volume: 94 year: 2009 publication-title: Appl. Phys. Lett. – volume: 28 start-page: 2547 year: 2016 publication-title: Adv. Mater. – volume: 108 year: 2016 publication-title: Appl. Phys. Lett. – start-page: 29.7.1 year: 2019 end-page: 29.7.4 – start-page: 34.4.1 year: 2021 end-page: 34.4.4 – volume: 1 start-page: 442 year: 2018 publication-title: Nat. Electron. – volume: 5 start-page: 478 year: 2012 publication-title: Materials – volume: 591 start-page: 43 year: 2021 publication-title: Nature – volume: 38 start-page: 114 year: 1965 publication-title: Electronics – start-page: 1 year: 2020 – volume: 111 year: 2017 publication-title: Appl. Phys. Lett. – volume: 11 start-page: 659 year: 2020 publication-title: Nat. Commun. – volume: 7 start-page: 1133 year: 2019 publication-title: IEEE J. Electron Devices Soc. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 15 start-page: 1587 year: 2021 publication-title: ACS Nano – volume: 41 start-page: 501 year: 2021 publication-title: Chin. J. Vac. Sci. Tech. – start-page: 782 year: 2016 – volume: 60 start-page: 1355 year: 2013 publication-title: IEEE Trans. Electron Devices – volume: 4 start-page: 495 year: 2021 publication-title: Nat. Electron. – volume: 3 start-page: 88 year: 2015 publication-title: IEEE J. Electron Devices Soc. – volume: 2 year: 2022 publication-title: Small Sci. – start-page: 12.4.1 year: 2020 end-page: 12.4.4 – volume: 7 start-page: 8261 year: 2015 publication-title: Nanoscale – start-page: T230 year: 2017 – start-page: 11.7.1 year: 2019 end-page: 11.7.4 – volume: 40 start-page: 232 year: 2019 publication-title: IEEE Electron Device Lett. – start-page: 15.2.1 year: 2021 end-page: 15.2.2 – start-page: 1 year: 2016 – volume: 60 year: 2021 publication-title: Jpn. J. Appl. Phys. |
SSID | ssj0001763453 |
Score | 2.3394146 |
Snippet | Nanosheet (NS) vertical‐stacked complementary field‐effect transistors (CFETs), where the NS n‐FET and NS p‐FET are vertically stacked and controlled using a... Abstract Nanosheet (NS) vertical‐stacked complementary field‐effect transistors (CFETs), where the NS n‐FET and NS p‐FET are vertically stacked and controlled... |
SourceID | doaj proquest wiley |
SourceType | Open Website Aggregation Database Publisher |
SubjectTerms | 2D semiconductors Chemical vapor deposition complementary field‐effect transistors Field effect transistors Leakage current Molybdenum disulfide nanosheet Nanosheets Performance evaluation Scaling Spectrum analysis Thickness Transistors Two dimensional materials vertical stacked |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV29TsMwELagEwsCAeJfHlijJrYT2yPQVh1aBkqBzUris0CqEkTLziPwjDwJd0mJYGJhS2zLse5y588n33eMXVD6SFYEGwUjfKRMMBFuCiIKQmWFAEp1pDjkeKZvHs1gSDQ5XakvuhPW0gO3gusj_LVlUioQeaxKkEUMuQU81ahEU5GdxvvG2Y_DVBNdQbNRqfxmaYxFP4cFJZ4Lis1RpdyGof8XrPwJTpvdZbTDttewkF-2y9llG1DtsdsJXdP-fP-YoSCBzxfEJPv0XHFKCahgwdE11ssngBWNWeVokJ5fj4Z3_Ar3Js9rHHk_4MmET-uZ6D_MQOyzOfZfj6N1DYTIS4QukU69MB5SUGmhlc0STw820xC0LUuVBsQDpkxFLrVXHmQmdWJxgCywKSvlAetVdQWHjOMsOiuN0D4nHvVQ2GBwCm1yZXMIcMSuSCbupaW5cEQ83TSgOtxaHe4vdRyx02-JurU1LJ2MLSI5dA3YLRopdx9pWZOFI_W4Tj3ucjiZdm_H_7GwE7ZFleLbC9enrLd6fYMztrn0b-fNr_MF8o7Dqg priority: 102 providerName: Directory of Open Access Journals |
Title | Large‐Scale Ultrathin Channel Nanosheet‐Stacked CFET Based on CVD 1L MoS2/WSe2 |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faelm.202200722 https://www.proquest.com/docview/3090957874 https://doaj.org/article/8269c1c4e2a04ce3b0ea9e5494173214 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTsMwDI5gJy78CBD_yoFrtTVJm-Q4YIjDQIgx4Ba1jQNIaEXbuPMIPCNPgt12Ba5waxPXqZzYsa34C2PHVD6S5sFGwQgfKRNMhJuCiIJQaS6ASh0pD3kx0lcP5mxAMDltFX-ND9Em3EgzKntNCp7ls-43aGgGL1RJLijZJsgIY6hQ1XDI6-8kC2qPqpAoUTFtFKe9hwVwY090f3NoQPt_eZo__dVqwzlf-_-vrrPVxtnk_Xp1bLAlmGyymyEd_v58_xjh9AAfvxA-7dPzhFOhAY7E0eCWsyeAOdHMM1Rzz0_PB7f8BHc8z0ukvDvj8ZBfliPRvR-B2GJj7D-9iJqbFSIv0SGKdOKF8ZCASnKtbBp7erCphqBtUagkoJdhikRkUnvlQaZSxxYJZI5NaSG3WWdSTmCHceSi08II7TNCZw-5DQZZaJMpm0GAXXZCYnWvNXiGIzjrqqGcPrpGOxzGOLaICwUCmRQg8x5kFjB0VbGmm5R22cFiUlyjYzMnexb9QzQ42C0q8beD1FjMwpHgXSt41x8ML9u3vb98tM9W6L75-tj2AevMp29wyJZn_u2oWnlHVUz_BWSO1tQ |
link.rule.ids | 315,782,786,866,1408,2106,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NTtwwELYKPcClBUFVyp8PvUa7sR3_HBdYtIgsqlhouVlJPIZKaFOxy51H6DP2STqTZBe4Im6J7Yyjsb_xeOT5zNh3Sh_RZXRJtCIkykab4KIgkiiULgVQqiPFIUcTc3FjT4ZEkzNY5MK0_BDLgBsho7HXBHAKSPeeWUMLuKdUckHRNoFW-KPSOBspi0P-eA6zIH5Uw0WJ0HRJqvs3C-rGvui9FtHR9r_yNV96rM2Sc_r5HX52g33q_E0-aCfIJvsA0y12mdP5739Pfyc4QsCv74mi9u73lFOuAXbF0ebWszuAObWZF4j0wI9Ph1f8CBe9wGts-fOEpzkf1xPR-zUBsc2usf54lHSXKyRBok-UmCwIGyADlZVGOZ0GenDaQDSuqlQW0dGwVSYKaYIKILU0qcMGssQiXckvbHVaT-Er4yjF6MoKEwoiaI-lixZFGFsoV0CEHXZEevV_Wv4MT4zWTUH9cOs7gHjc5rgqrRQIFFKBLPtQOMDdq0oNXaa0w_YWo-I7mM287Dt0EdHmYLVo9L_spKVjFp4U75eK94NhPl6-fXvLR4dsbXQ1zn1-dnG-y9bp-vn2FPceW50_PMI-W5mFx4NmGv4HAn3aBw |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTuswELV4SIgND10Qb7xgG7WxndheAm0FoiBEL4-dlcTjy5VQg2jZ8wl8I1_CTBICbGGX2M44GnvGxyPPMWMHlD6S5sFGwQgfKRNMhIuCiIJQaS6AUh0pDnky0hd3ptcnmpw2i7_mh2gDbmQZlb8mA3_0ofNJGprBA2WSCwq2CXTC8wqxOLHnS3n5GWVB81EVFSVapo3itHv3wdzYFZ3vIhrW_m9Q8ytgrVacwfLv_3WFLTVokx_W02OVzcD4D7sa0unvt5fXEY4P8OsHIqi9_z_mlGmAPXH0uOXkHmBKbaYZ2rnnx4P-X36ES57nJba86fF4yM_LkejcjkCssWusPz6JmqsVIi8REUU68cJ4SEAluVY2jT092FRD0LYoVBIQZpgiEZnUXnmQqdSxxQYyx6K0kOtsblyOYYNxlKLTwgjtM6JnD7kNBkVokymbQYBNdkRqdY81e4YjPuuqoHz65xrzcLjJsUVcKBAopACZdyGzgHtXFWu6SmmT7XwMimuMbOJk1yJARI-D1aJSf9tJTcYsHCnetYp3h_3hefu29ZOP9tnCZW_ghqcXZ9tske6er49w77C56dMz7LLZiX_eqybhO21l2K0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large%E2%80%90Scale+Ultrathin+Channel+Nanosheet%E2%80%90Stacked+CFET+Based+on+CVD+1L+MoS2%2FWSe2&rft.jtitle=Advanced+electronic+materials&rft.au=Liu%2C+Menggan&rft.au=Niu%2C+Jiebin&rft.au=Yang%2C+Guanhua&rft.au=Chen%2C+Kaifei&rft.date=2023-02-01&rft.issn=2199-160X&rft.eissn=2199-160X&rft.volume=9&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faelm.202200722&rft.externalDBID=10.1002%252Faelm.202200722&rft.externalDocID=AELM202200722 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-160X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-160X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-160X&client=summon |