Large‐Scale Ultrathin Channel Nanosheet‐Stacked CFET Based on CVD 1L MoS2/WSe2

Nanosheet (NS) vertical‐stacked complementary field‐effect transistors (CFETs), where the NS n‐FET and NS p‐FET are vertically stacked and controlled using a common gate, would result in maximum device footprint reduction. However, silicon‐based transistor will become invalid due to mobility degrada...

Full description

Saved in:
Bibliographic Details
Published in:Advanced electronic materials Vol. 9; no. 2
Main Authors: Liu, Menggan, Niu, Jiebin, Yang, Guanhua, Chen, Kaifei, Lu, Wendong, Liao, Fuxi, Lu, Congyan, Lu, Nianduan, Li, Ling
Format: Journal Article
Language:English
Published: Seoul John Wiley & Sons, Inc 01-02-2023
Wiley-VCH
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Nanosheet (NS) vertical‐stacked complementary field‐effect transistors (CFETs), where the NS n‐FET and NS p‐FET are vertically stacked and controlled using a common gate, would result in maximum device footprint reduction. However, silicon‐based transistor will become invalid due to mobility degradation and leakage current rising when scaling the thickness of channel and dielectric. Here, it is experimentally demonstrated that CFET can scaling down to 1 nm channel thickness with excellent performance, where chemical vapor deposition (CVD) one layer (1L) WSe2 p‐type NS FET is vertically stacked on top of CVD 1L MoS2 n‐type NS FET. Bottom MoS2 NS FET achieves high on‐state current of ION = 3.3 × 10−5 A µm µm−1 and low off‐state current of IOFF = 3.3 × 10−13 A µm µm−1 at VDS = 0.7 V, with the subthreshold swing reaching 80 mV dec−1. Top WSe2 NS FET achieves high on‐state current of ION = 1.2 × 10−5 A µm µm−1 and IOFF = 4 × 10−11 A µm µm−1 at VDS = −0.7 V, while the subthreshold swing reaching 150 mV dec−1. Statistical data of 22 CFET devices demonstrate excellent uniformity toward large‐area applications. The CFET based on large‐scale 2D materials breaks the limit of channel scaling and provides a technological base for future high‐performance and low‐power electronics. A nanosheet‐stacked complementary FET based on CVD monolayer MoS2/WSe2 is presented. The FET shows high drive current and low leakage current attributed to the GAA structure and 2D semiconductors electrical properties. Statistical data demonstrate excellent uniformity toward large‐area applications. The results break the limit of channel‐scaling, and pave the way for high‐performance and low‐power electronics.
AbstractList Abstract Nanosheet (NS) vertical‐stacked complementary field‐effect transistors (CFETs), where the NS n‐FET and NS p‐FET are vertically stacked and controlled using a common gate, would result in maximum device footprint reduction. However, silicon‐based transistor will become invalid due to mobility degradation and leakage current rising when scaling the thickness of channel and dielectric. Here, it is experimentally demonstrated that CFET can scaling down to 1 nm channel thickness with excellent performance, where chemical vapor deposition (CVD) one layer (1L) WSe2 p‐type NS FET is vertically stacked on top of CVD 1L MoS2 n‐type NS FET. Bottom MoS2 NS FET achieves high on‐state current of ION = 3.3 × 10−5 A µm µm−1 and low off‐state current of IOFF = 3.3 × 10−13 A µm µm−1 at VDS = 0.7 V, with the subthreshold swing reaching 80 mV dec−1. Top WSe2 NS FET achieves high on‐state current of ION = 1.2 × 10−5 A µm µm−1 and IOFF = 4 × 10−11 A µm µm−1 at VDS = −0.7 V, while the subthreshold swing reaching 150 mV dec−1. Statistical data of 22 CFET devices demonstrate excellent uniformity toward large‐area applications. The CFET based on large‐scale 2D materials breaks the limit of channel scaling and provides a technological base for future high‐performance and low‐power electronics.
Nanosheet (NS) vertical‐stacked complementary field‐effect transistors (CFETs), where the NS n‐FET and NS p‐FET are vertically stacked and controlled using a common gate, would result in maximum device footprint reduction. However, silicon‐based transistor will become invalid due to mobility degradation and leakage current rising when scaling the thickness of channel and dielectric. Here, it is experimentally demonstrated that CFET can scaling down to 1 nm channel thickness with excellent performance, where chemical vapor deposition (CVD) one layer (1L) WSe2 p‐type NS FET is vertically stacked on top of CVD 1L MoS2 n‐type NS FET. Bottom MoS2 NS FET achieves high on‐state current of ION = 3.3 × 10−5 A µm µm−1 and low off‐state current of IOFF = 3.3 × 10−13 A µm µm−1 at VDS = 0.7 V, with the subthreshold swing reaching 80 mV dec−1. Top WSe2 NS FET achieves high on‐state current of ION = 1.2 × 10−5 A µm µm−1 and IOFF = 4 × 10−11 A µm µm−1 at VDS = −0.7 V, while the subthreshold swing reaching 150 mV dec−1. Statistical data of 22 CFET devices demonstrate excellent uniformity toward large‐area applications. The CFET based on large‐scale 2D materials breaks the limit of channel scaling and provides a technological base for future high‐performance and low‐power electronics. A nanosheet‐stacked complementary FET based on CVD monolayer MoS2/WSe2 is presented. The FET shows high drive current and low leakage current attributed to the GAA structure and 2D semiconductors electrical properties. Statistical data demonstrate excellent uniformity toward large‐area applications. The results break the limit of channel‐scaling, and pave the way for high‐performance and low‐power electronics.
Nanosheet (NS) vertical‐stacked complementary field‐effect transistors (CFETs), where the NS n‐FET and NS p‐FET are vertically stacked and controlled using a common gate, would result in maximum device footprint reduction. However, silicon‐based transistor will become invalid due to mobility degradation and leakage current rising when scaling the thickness of channel and dielectric. Here, it is experimentally demonstrated that CFET can scaling down to 1 nm channel thickness with excellent performance, where chemical vapor deposition (CVD) one layer (1L) WSe2 p‐type NS FET is vertically stacked on top of CVD 1L MoS2 n‐type NS FET. Bottom MoS2 NS FET achieves high on‐state current of ION = 3.3 × 10−5 A µm µm−1 and low off‐state current of IOFF = 3.3 × 10−13 A µm µm−1 at VDS = 0.7 V, with the subthreshold swing reaching 80 mV dec−1. Top WSe2 NS FET achieves high on‐state current of ION = 1.2 × 10−5 A µm µm−1 and IOFF = 4 × 10−11 A µm µm−1 at VDS = −0.7 V, while the subthreshold swing reaching 150 mV dec−1. Statistical data of 22 CFET devices demonstrate excellent uniformity toward large‐area applications. The CFET based on large‐scale 2D materials breaks the limit of channel scaling and provides a technological base for future high‐performance and low‐power electronics.
Author Liao, Fuxi
Niu, Jiebin
Lu, Wendong
Li, Ling
Yang, Guanhua
Liu, Menggan
Lu, Congyan
Lu, Nianduan
Chen, Kaifei
Author_xml – sequence: 1
  givenname: Menggan
  orcidid: 0000-0002-9371-1965
  surname: Liu
  fullname: Liu, Menggan
  organization: University of Chinese Academy of Sciences
– sequence: 2
  givenname: Jiebin
  surname: Niu
  fullname: Niu, Jiebin
  organization: University of Chinese Academy of Sciences
– sequence: 3
  givenname: Guanhua
  orcidid: 0000-0003-4694-7040
  surname: Yang
  fullname: Yang, Guanhua
  email: yangguanhua@ime.ac.cn
  organization: Peng Cheng Laboratory
– sequence: 4
  givenname: Kaifei
  surname: Chen
  fullname: Chen, Kaifei
  organization: University of Chinese Academy of Sciences
– sequence: 5
  givenname: Wendong
  surname: Lu
  fullname: Lu, Wendong
  organization: Institute of Microelectronics of the Chinese Academy of Sciences
– sequence: 6
  givenname: Fuxi
  surname: Liao
  fullname: Liao, Fuxi
  organization: Institute of Microelectronics of the Chinese Academy of Sciences
– sequence: 7
  givenname: Congyan
  surname: Lu
  fullname: Lu, Congyan
  organization: University of Chinese Academy of Sciences
– sequence: 8
  givenname: Nianduan
  surname: Lu
  fullname: Lu, Nianduan
  organization: University of Chinese Academy of Sciences
– sequence: 9
  givenname: Ling
  orcidid: 0000-0002-7622-8752
  surname: Li
  fullname: Li, Ling
  email: lingli@ime.ac.cn
  organization: Peng Cheng Laboratory
BookMark eNpNkc1OwkAUhSdGExHZum7iGpjfTmeJFZWkaCKi7ibD9ALF0sFpiWHnI_iMPomtGOLqnnvy5dybnDN0XLgCELoguEcwpn0D-bpHMaUYS0qPUIsSpbokxK_H__Qp6pTlCmNMZMi4YC30mBi_gO_Pr4k1OQTTvPKmWmZFEC9NUUAe3JvClUuAqmEqY98gDeKb4VNwZcpaupp8vg5IEozdhPZfJkDP0cnc5CV0_mYbTWs-vusmD7ejeJB0U8YU7UqR0igFAVzMJFchSRuhQglzqazlYi4Ej6yghsmUp8BCJomqATarrdCyNhrtc1NnVnrjs7XxO-1Mpn8N5xfa-CqzOeiIhsoSy4EazC2wGQajQHDFiWSU8Drrcp-18e59C2WlV27ri_p9zbDCSshINpTaUx9ZDrvDSYJ104FuOtCHDvRgmIwPG_sBxgJ7_Q
ContentType Journal Article
Copyright 2022 The Authors. Advanced Electronic Materials published by Wiley‐VCH GmbH
2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. Advanced Electronic Materials published by Wiley‐VCH GmbH
– notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
JQ2
DOA
DOI 10.1002/aelm.202200722
DatabaseName Wiley-Blackwell Open Access Collection
Wiley Online Library Free Content
ProQuest Computer Science Collection
DOAJ Directory of Open Access Journals
DatabaseTitle ProQuest Computer Science Collection
DatabaseTitleList

ProQuest Computer Science Collection
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2199-160X
EndPage n/a
ExternalDocumentID oai_doaj_org_article_8269c1c4e2a04ce3b0ea9e5494173214
AELM202200722
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 61890944; 61725404; 61874134; 61804170; 61821091; 61888102; 61720106013; 61904195; 61404164; 62004214
– fundername: National Key Research and Development Program
  funderid: 2018YFA0208503; 2019YFB2205002; 2021YFB3600704
– fundername: Strategic Priority Research Program of Chinese Academy of Sciences
  funderid: XDB30030000
– fundername: Beijing Training Project for the Leading Talents in S&T
  funderid: Z151100000315008)
– fundername: Opening Project of Key Laboratory of Microelectronic Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences
GroupedDBID 0R~
1OC
24P
33P
AAESR
AAHHS
AAXRX
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AFBPY
AIACR
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ARCSS
AVUZU
AZVAB
BFHJK
BMXJE
BRXPI
DCZOG
EBS
EJD
GODZA
GROUPED_DOAJ
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
O9-
P2W
ROL
SUPJJ
WBKPD
WIN
WOHZO
WXSBR
ZZTAW
JQ2
ID FETCH-LOGICAL-d3392-75d28de5e45b74961d45b7967ef79cc45f5548c52a37d4de3637197963b2a36c3
IEDL.DBID 33P
ISSN 2199-160X
IngestDate Tue Oct 22 15:16:06 EDT 2024
Thu Oct 10 22:21:50 EDT 2024
Sat Aug 24 01:07:34 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-d3392-75d28de5e45b74961d45b7967ef79cc45f5548c52a37d4de3637197963b2a36c3
ORCID 0000-0002-9371-1965
0000-0002-7622-8752
0000-0003-4694-7040
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faelm.202200722
PQID 3090957874
PQPubID 6852865
PageCount 7
ParticipantIDs doaj_primary_oai_doaj_org_article_8269c1c4e2a04ce3b0ea9e5494173214
proquest_journals_3090957874
wiley_primary_10_1002_aelm_202200722_AELM202200722
PublicationCentury 2000
PublicationDate February 2023
20230201
2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: February 2023
PublicationDecade 2020
PublicationPlace Seoul
PublicationPlace_xml – name: Seoul
PublicationTitle Advanced electronic materials
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley-VCH
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley-VCH
References 2019; 7
2021; 4
2015; 3
2000; 47
2020; 63
2016; 108
2020; 12
2020; 11
2017; 111
1965; 38
2012; 12
2015; 7
2021; 15
2019; 40
2021; 33
2018; 1
2021
2009; 94
2020
2019
2013; 60
2018
2021; 591
2017
2016
2020; 67
2022; 2
2016; 28
2021; 60
2014; 8
2021; 41
2012; 5
2022; 18
References_xml – start-page: 2.1.1
  year: 2021
  end-page: 2.1.2
– volume: 12
  start-page: 3788
  year: 2012
  publication-title: Nano Lett.
– start-page: 3.3.1
  year: 2021
  end-page: 3.3.2
– volume: 18
  year: 2022
  publication-title: Small
– volume: 67
  start-page: 3504
  year: 2020
  publication-title: IEEE Trans. Electron Devices
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 4948
  year: 2014
  publication-title: ACS Nano
– start-page: 2.1.1
  year: 2020
  end-page: 2.1.4
– start-page: 141
  year: 2018
– year: 2021
– volume: 47
  start-page: 2320
  year: 2000
  publication-title: IEEE Trans. Electron Devices
– volume: 63
  year: 2020
  publication-title: Sci. China: Phys., Mech. Astron.
– start-page: 2.2.1
  year: 2020
  end-page: 2.2.4
– volume: 94
  year: 2009
  publication-title: Appl. Phys. Lett.
– volume: 28
  start-page: 2547
  year: 2016
  publication-title: Adv. Mater.
– volume: 108
  year: 2016
  publication-title: Appl. Phys. Lett.
– start-page: 29.7.1
  year: 2019
  end-page: 29.7.4
– start-page: 34.4.1
  year: 2021
  end-page: 34.4.4
– volume: 1
  start-page: 442
  year: 2018
  publication-title: Nat. Electron.
– volume: 5
  start-page: 478
  year: 2012
  publication-title: Materials
– volume: 591
  start-page: 43
  year: 2021
  publication-title: Nature
– volume: 38
  start-page: 114
  year: 1965
  publication-title: Electronics
– start-page: 1
  year: 2020
– volume: 111
  year: 2017
  publication-title: Appl. Phys. Lett.
– volume: 11
  start-page: 659
  year: 2020
  publication-title: Nat. Commun.
– volume: 7
  start-page: 1133
  year: 2019
  publication-title: IEEE J. Electron Devices Soc.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 15
  start-page: 1587
  year: 2021
  publication-title: ACS Nano
– volume: 41
  start-page: 501
  year: 2021
  publication-title: Chin. J. Vac. Sci. Tech.
– start-page: 782
  year: 2016
– volume: 60
  start-page: 1355
  year: 2013
  publication-title: IEEE Trans. Electron Devices
– volume: 4
  start-page: 495
  year: 2021
  publication-title: Nat. Electron.
– volume: 3
  start-page: 88
  year: 2015
  publication-title: IEEE J. Electron Devices Soc.
– volume: 2
  year: 2022
  publication-title: Small Sci.
– start-page: 12.4.1
  year: 2020
  end-page: 12.4.4
– volume: 7
  start-page: 8261
  year: 2015
  publication-title: Nanoscale
– start-page: T230
  year: 2017
– start-page: 11.7.1
  year: 2019
  end-page: 11.7.4
– volume: 40
  start-page: 232
  year: 2019
  publication-title: IEEE Electron Device Lett.
– start-page: 15.2.1
  year: 2021
  end-page: 15.2.2
– start-page: 1
  year: 2016
– volume: 60
  year: 2021
  publication-title: Jpn. J. Appl. Phys.
SSID ssj0001763453
Score 2.3394146
Snippet Nanosheet (NS) vertical‐stacked complementary field‐effect transistors (CFETs), where the NS n‐FET and NS p‐FET are vertically stacked and controlled using a...
Abstract Nanosheet (NS) vertical‐stacked complementary field‐effect transistors (CFETs), where the NS n‐FET and NS p‐FET are vertically stacked and controlled...
SourceID doaj
proquest
wiley
SourceType Open Website
Aggregation Database
Publisher
SubjectTerms 2D semiconductors
Chemical vapor deposition
complementary field‐effect transistors
Field effect transistors
Leakage current
Molybdenum disulfide
nanosheet
Nanosheets
Performance evaluation
Scaling
Spectrum analysis
Thickness
Transistors
Two dimensional materials
vertical stacked
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV29TsMwELagEwsCAeJfHlijJrYT2yPQVh1aBkqBzUris0CqEkTLziPwjDwJd0mJYGJhS2zLse5y588n33eMXVD6SFYEGwUjfKRMMBFuCiIKQmWFAEp1pDjkeKZvHs1gSDQ5XakvuhPW0gO3gusj_LVlUioQeaxKkEUMuQU81ahEU5GdxvvG2Y_DVBNdQbNRqfxmaYxFP4cFJZ4Lis1RpdyGof8XrPwJTpvdZbTDttewkF-2y9llG1DtsdsJXdP-fP-YoSCBzxfEJPv0XHFKCahgwdE11ssngBWNWeVokJ5fj4Z3_Ar3Js9rHHk_4MmET-uZ6D_MQOyzOfZfj6N1DYTIS4QukU69MB5SUGmhlc0STw820xC0LUuVBsQDpkxFLrVXHmQmdWJxgCywKSvlAetVdQWHjOMsOiuN0D4nHvVQ2GBwCm1yZXMIcMSuSCbupaW5cEQ83TSgOtxaHe4vdRyx02-JurU1LJ2MLSI5dA3YLRopdx9pWZOFI_W4Tj3ucjiZdm_H_7GwE7ZFleLbC9enrLd6fYMztrn0b-fNr_MF8o7Dqg
  priority: 102
  providerName: Directory of Open Access Journals
Title Large‐Scale Ultrathin Channel Nanosheet‐Stacked CFET Based on CVD 1L MoS2/WSe2
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faelm.202200722
https://www.proquest.com/docview/3090957874
https://doaj.org/article/8269c1c4e2a04ce3b0ea9e5494173214
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTsMwDI5gJy78CBD_yoFrtTVJm-Q4YIjDQIgx4Ba1jQNIaEXbuPMIPCNPgt12Ba5waxPXqZzYsa34C2PHVD6S5sFGwQgfKRNMhJuCiIJQaS6ASh0pD3kx0lcP5mxAMDltFX-ND9Em3EgzKntNCp7ls-43aGgGL1RJLijZJsgIY6hQ1XDI6-8kC2qPqpAoUTFtFKe9hwVwY090f3NoQPt_eZo__dVqwzlf-_-vrrPVxtnk_Xp1bLAlmGyymyEd_v58_xjh9AAfvxA-7dPzhFOhAY7E0eCWsyeAOdHMM1Rzz0_PB7f8BHc8z0ukvDvj8ZBfliPRvR-B2GJj7D-9iJqbFSIv0SGKdOKF8ZCASnKtbBp7erCphqBtUagkoJdhikRkUnvlQaZSxxYJZI5NaSG3WWdSTmCHceSi08II7TNCZw-5DQZZaJMpm0GAXXZCYnWvNXiGIzjrqqGcPrpGOxzGOLaICwUCmRQg8x5kFjB0VbGmm5R22cFiUlyjYzMnexb9QzQ42C0q8beD1FjMwpHgXSt41x8ML9u3vb98tM9W6L75-tj2AevMp29wyJZn_u2oWnlHVUz_BWSO1tQ
link.rule.ids 315,782,786,866,1408,2106,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NTtwwELYKPcClBUFVyp8PvUa7sR3_HBdYtIgsqlhouVlJPIZKaFOxy51H6DP2STqTZBe4Im6J7Yyjsb_xeOT5zNh3Sh_RZXRJtCIkykab4KIgkiiULgVQqiPFIUcTc3FjT4ZEkzNY5MK0_BDLgBsho7HXBHAKSPeeWUMLuKdUckHRNoFW-KPSOBspi0P-eA6zIH5Uw0WJ0HRJqvs3C-rGvui9FtHR9r_yNV96rM2Sc_r5HX52g33q_E0-aCfIJvsA0y12mdP5739Pfyc4QsCv74mi9u73lFOuAXbF0ebWszuAObWZF4j0wI9Ph1f8CBe9wGts-fOEpzkf1xPR-zUBsc2usf54lHSXKyRBok-UmCwIGyADlZVGOZ0GenDaQDSuqlQW0dGwVSYKaYIKILU0qcMGssQiXckvbHVaT-Er4yjF6MoKEwoiaI-lixZFGFsoV0CEHXZEevV_Wv4MT4zWTUH9cOs7gHjc5rgqrRQIFFKBLPtQOMDdq0oNXaa0w_YWo-I7mM287Dt0EdHmYLVo9L_spKVjFp4U75eK94NhPl6-fXvLR4dsbXQ1zn1-dnG-y9bp-vn2FPceW50_PMI-W5mFx4NmGv4HAn3aBw
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTuswELV4SIgND10Qb7xgG7WxndheAm0FoiBEL4-dlcTjy5VQg2jZ8wl8I1_CTBICbGGX2M44GnvGxyPPMWMHlD6S5sFGwQgfKRNMhIuCiIJQaS6AUh0pDnky0hd3ptcnmpw2i7_mh2gDbmQZlb8mA3_0ofNJGprBA2WSCwq2CXTC8wqxOLHnS3n5GWVB81EVFSVapo3itHv3wdzYFZ3vIhrW_m9Q8ytgrVacwfLv_3WFLTVokx_W02OVzcD4D7sa0unvt5fXEY4P8OsHIqi9_z_mlGmAPXH0uOXkHmBKbaYZ2rnnx4P-X36ES57nJba86fF4yM_LkejcjkCssWusPz6JmqsVIi8REUU68cJ4SEAluVY2jT092FRD0LYoVBIQZpgiEZnUXnmQqdSxxQYyx6K0kOtsblyOYYNxlKLTwgjtM6JnD7kNBkVokymbQYBNdkRqdY81e4YjPuuqoHz65xrzcLjJsUVcKBAopACZdyGzgHtXFWu6SmmT7XwMimuMbOJk1yJARI-D1aJSf9tJTcYsHCnetYp3h_3hefu29ZOP9tnCZW_ghqcXZ9tske6er49w77C56dMz7LLZiX_eqybhO21l2K0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large%E2%80%90Scale+Ultrathin+Channel+Nanosheet%E2%80%90Stacked+CFET+Based+on+CVD+1L+MoS2%2FWSe2&rft.jtitle=Advanced+electronic+materials&rft.au=Liu%2C+Menggan&rft.au=Niu%2C+Jiebin&rft.au=Yang%2C+Guanhua&rft.au=Chen%2C+Kaifei&rft.date=2023-02-01&rft.issn=2199-160X&rft.eissn=2199-160X&rft.volume=9&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faelm.202200722&rft.externalDBID=10.1002%252Faelm.202200722&rft.externalDocID=AELM202200722
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-160X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-160X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-160X&client=summon