Microalgae Immobilization Using Hydrogels for Environmental Applications: Study of Transient Photopolymerization

Immobilization of microalgae has emerged as a useful technique for effective environmental applications as removal of undesirable compounds from water, culture collection handling for CO2 capture, development of biosensors, and production of clean energy among others. In this work, polymerization of...

Full description

Saved in:
Bibliographic Details
Published in:Chemical engineering transactions Vol. 47
Main Authors: Á.D. Gonzalez-Delgado, A.F. Barajas-Solano, Y.Y. Peralta-Ruiz
Format: Journal Article
Language:English
Published: AIDIC Servizi S.r.l 01-05-2016
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Immobilization of microalgae has emerged as a useful technique for effective environmental applications as removal of undesirable compounds from water, culture collection handling for CO2 capture, development of biosensors, and production of clean energy among others. In this work, polymerization of hydrogels is evaluated in order to generate adequate nanoporous morphology for microalgae immobilization via use of transient light intensity. Hydrogels were polymerized using a UV light intensity range between 140 and 700mW/cm2 during 0.8 h and characterized using rheology evaluation using an angular frequency of 1 rad/s fordefined monomer, initiator and solvent amounts. Results shows that transient light polymerization has a significant effect on average pore size and pore size distribution, obtaining different gel points between 1,300 and 1,700 s and modules between 4,000 and 13,000 Pa, allowing to adjust nanoporous morphology of hydrogels improving the attach viability of species of microalgae with variable sizes and shapes, and allowing to develop better hydrogels for novel microalgae immobilization-based applications.
ISSN:2283-9216
DOI:10.3303/CET1647077