Regularity bounds on Zakharov system evolutions

Spatial regularity properties of certain global-in-time solutions of the Zakharov system are established. In particular, the evolving solution $u(t)$ is shown to satisfy an estimate $|u(t)|_{H^s} leq C |t|^{(s-1)+}$, where $H^s$ is the standard spatial Sobolev norm. The proof is an adaptation of ear...

Full description

Saved in:
Bibliographic Details
Published in:Electronic journal of differential equations Vol. 2002; no. 75; pp. 1 - 11
Main Authors: James Colliander, Gigliola Staffilani
Format: Journal Article
Language:English
Published: Texas State University 01-08-2002
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Spatial regularity properties of certain global-in-time solutions of the Zakharov system are established. In particular, the evolving solution $u(t)$ is shown to satisfy an estimate $|u(t)|_{H^s} leq C |t|^{(s-1)+}$, where $H^s$ is the standard spatial Sobolev norm. The proof is an adaptation of earlier work on the nonlinear Schrodinger equation which reduces matters to bilinear estimates.
AbstractList Spatial regularity properties of certain global-in-time solutions of the Zakharov system are established. In particular, the evolving solution $u(t)$ is shown to satisfy an estimate $|u(t)|_{H^s} leq C |t|^{(s-1)+}$, where $H^s$ is the standard spatial Sobolev norm. The proof is an adaptation of earlier work on the nonlinear Schrodinger equation which reduces matters to bilinear estimates.
Author Gigliola Staffilani
James Colliander
Author_xml – sequence: 1
  fullname: James Colliander
– sequence: 2
  fullname: Gigliola Staffilani
BookMark eNotzMtKxDAUgOEsRnBm9B36AsXc2pMsZfAyMCCIbtyUk5xk7NhpJGkH-vaCuvrhW_wbthrTGFZsLTjIum2tuGabUk6cC6ulXrO713CcB8z9tFQuzSOVKo3VB359Yk6XqixlCucqXNIwT30ayw27ijiUcPvfLXt_fHjbPdeHl6f97v5Qk2jEVBswZISP2IBQIKy3jsgAAbjoHTruSFIDuuGtNtySlQolefCi5RG9UVu2__tSwlP3nfsz5qVL2He_kPKxwzz1fggdErQ6QETwqCNwyxGiklZqJ8E0Uv0A2ztNuQ
ContentType Journal Article
DBID DOA
DatabaseName Directory of Open Access Journals
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EndPage 11
ExternalDocumentID oai_doaj_org_article_ad764e7fa7ca4f7090a7f32924b27852
GroupedDBID -~9
29G
2WC
5GY
5VS
ADBBV
AENEX
ALMA_UNASSIGNED_HOLDINGS
BCNDV
C1A
E3Z
ESX
FRJ
FRP
GROUPED_DOAJ
IPNFZ
KQ8
LO0
M~E
OK1
P2P
QN7
REM
RIG
RNS
TR2
XSB
ID FETCH-LOGICAL-d151t-878d81cfa5713719c9bdd87d77bfcbab0bd2d5745064809d923a2dc7c160fac83
IEDL.DBID DOA
ISSN 1072-6691
IngestDate Tue Oct 22 14:46:14 EDT 2024
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 75
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-d151t-878d81cfa5713719c9bdd87d77bfcbab0bd2d5745064809d923a2dc7c160fac83
OpenAccessLink https://doaj.org/article/ad764e7fa7ca4f7090a7f32924b27852
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_ad764e7fa7ca4f7090a7f32924b27852
PublicationCentury 2000
PublicationDate 2002-08-01
PublicationDateYYYYMMDD 2002-08-01
PublicationDate_xml – month: 08
  year: 2002
  text: 2002-08-01
  day: 01
PublicationDecade 2000
PublicationTitle Electronic journal of differential equations
PublicationYear 2002
Publisher Texas State University
Publisher_xml – name: Texas State University
SSID ssj0019424
Score 1.5999563
Snippet Spatial regularity properties of certain global-in-time solutions of the Zakharov system are established. In particular, the evolving solution $u(t)$ is shown...
SourceID doaj
SourceType Open Website
StartPage 1
SubjectTerms bilinear estimates
initial value problems
weak turbulence
Zakharov system
Title Regularity bounds on Zakharov system evolutions
URI https://doaj.org/article/ad764e7fa7ca4f7090a7f32924b27852
Volume 2002
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1LT8QgFIWJzkoXxmd8pwu3ZCgtXFj6mMlsdOEjMW4a4EJMTDrGzvj7hdKZuHPjlgSanhIuJ9DvEHLFa2GVKgVV2jqaKj61lkuKoYQApdGVSv8Oz57g4VXdTRImZx31le6EZTxwFm5sEGTtIRhwpg7ANDMQKh5tg-WgRF59mVyZqeH8QNc5zpYBp1ImAOcvIn9fOqa7ZGfY8xXX-Vl7ZMO3-2T7fg1M7Q7I-LHPhE9JcoVNSUddMW-LN_PxbqLnLzJvufDfq4lySF6mk-fbGR2yDCjGmrqIi45CVbpgRHSFUGqnLaICBLDBWWOZRY4C6sSPU0xj3HcZjg5cKVkwTlVHZNTOW39MCmdMBcBiV69qjH5Jg_DC-SgHCiXDCblJ79p8ZlxFkwDSfUOUtRlkbf6S9fQ_BjkjW314Sn9f7pyMFl9Lf0E2O1xe9p_rB1S9m2Y
link.rule.ids 315,782,786,2106
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regularity+bounds+on+Zakharov+system+evolutions&rft.jtitle=Electronic+journal+of+differential+equations&rft.au=James+Colliander&rft.au=Gigliola+Staffilani&rft.date=2002-08-01&rft.pub=Texas+State+University&rft.issn=1072-6691&rft.volume=2002&rft.issue=75&rft.spage=1&rft.epage=11&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ad764e7fa7ca4f7090a7f32924b27852
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1072-6691&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1072-6691&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1072-6691&client=summon