Understanding an evolving pandemic: An analysis of the clinical time delay distributions of COVID-19 in the United Kingdom

Understanding and monitoring the epidemiological time delay dynamics of SARS-CoV-2 infection provides insights that are key to discerning changes in the phenotype of the virus, the demographics impacted, the efficacy of treatment, and the ability of the health service to manage large volumes of pati...

Full description

Saved in:
Bibliographic Details
Published in:PloS one Vol. 16; no. 10
Main Authors: Thomas Ward, Alexander Johnsen
Format: Journal Article
Language:English
Published: Public Library of Science (PLoS) 20-10-2021
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Understanding and monitoring the epidemiological time delay dynamics of SARS-CoV-2 infection provides insights that are key to discerning changes in the phenotype of the virus, the demographics impacted, the efficacy of treatment, and the ability of the health service to manage large volumes of patients. This paper analyses how the pandemic has evolved in the United Kingdom through the temporal changes to the epidemiological time delay distributions for clinical outcomes. Using the most complete clinical data presently available, we have analysed, through a doubly interval censored Bayesian modelling approach, the time from infection to a clinical outcome. Across the pandemic, for the periods that were defined as epidemiologically distinct, the modelled mean ranges from 8.0 to 9.7 days for infection to hospitalisation, 10.3 to 15.0 days for hospitalisation to death, and 17.4 to 24.7 days for infection to death. The time delay from infection to hospitalisation has increased since the first wave of the pandemic. A marked decrease was observed in the time from hospitalisation to death and infection to death at times of high incidence when hospitals and ICUs were under the most pressure. There is a clear relationship between age groups that is indicative of the youngest and oldest demographics having the shortest time delay distributions before a clinical outcome. A statistically significant difference was found between genders for the time delay from infection to hospitalisation, which was not found for hospitalisation to death. The results by age group indicate that younger demographics that require clinical intervention for SARS-CoV-2 infection are more likely to require earlier hospitalisation that leads to a shorter time to death, which is suggestive of the largely more vulnerable nature of these individuals that succumb to infection. The distinction found between genders for exposure to hospitalisation is revealing of gender healthcare seeking behaviours.
ISSN:1932-6203
DOI:10.1371/journal.pone.0257978