Unveiling the unique potential of MXene with and without graphene nanoplatelet for thermal energy storage applications

Solar thermal energy storage (TES) is an outstanding innovation that can help solar technology remain relevant during nighttime and cloudy days. TES using phase change material (PCM) is an avant-garde solution for a clean and renewable energy transition. The present study unveils the unique potentia...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science and pollution research international
Main Authors: Rashid, Amirul Aminur, Mansor, Muhammad Syahir, Hashim, Nur Awanis, Moharir, Sona R, Abdul Manaf, Norhuda
Format: Journal Article
Language:English
Published: Germany 17-07-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Solar thermal energy storage (TES) is an outstanding innovation that can help solar technology remain relevant during nighttime and cloudy days. TES using phase change material (PCM) is an avant-garde solution for a clean and renewable energy transition. The present study unveils the unique potential of MXene as a performance enhancer in lauric acid (LA), which functions as a base PCM. The addition of graphene nanoplatelet (GNP) into the LA-MXene composite is prepared to comprehend and evaluate the benefits and detriments of adding carbon-based nanomaterial into the PCM via a two-step homogenizing method. A similar weight percentage of MXene and GNP at 0.75 was used for composite synthesis. The study found that the enthalpy of LA-MXene is comparable to LA at 169.87 J/kg and greater than LA-MXene/GNP, which has 137.53 J/kg. Regarding thermal storage performance, LA-MXene exhibited outstanding performance compared to LA-MXene/GNP in terms of enthalpy efficiency (λ) and relative enthalpy efficiency (η), achieving 95.4% and 96.1%, respectively. This is supported by the XPS spectra, which show that the crosslinking structure acted as a barrier, reinforcing the material and preventing further thermal degradation. This has resulted in robust and denser shells that significantly improved light absorption, enhancing both the photothermal conversion and thermal energy storage efficiency of LA/MXene. The present study reveals that LA-MXene is a promising and optimal candidate for the feasibility and reliability of TES in solar renewable energy applications. It was observed that the incorporation of exclusive MXene may effectively address the limitations of LA as a conventional PCM and surpass the traditional role of GNP. This study offers valuable insights into the superior performance of MXene alone, eliminating the need for doping with various nanomaterials and thereby reducing the complexity in synthesizing the PCM.
AbstractList Solar thermal energy storage (TES) is an outstanding innovation that can help solar technology remain relevant during nighttime and cloudy days. TES using phase change material (PCM) is an avant-garde solution for a clean and renewable energy transition. The present study unveils the unique potential of MXene as a performance enhancer in lauric acid (LA), which functions as a base PCM. The addition of graphene nanoplatelet (GNP) into the LA-MXene composite is prepared to comprehend and evaluate the benefits and detriments of adding carbon-based nanomaterial into the PCM via a two-step homogenizing method. A similar weight percentage of MXene and GNP at 0.75 was used for composite synthesis. The study found that the enthalpy of LA-MXene is comparable to LA at 169.87 J/kg and greater than LA-MXene/GNP, which has 137.53 J/kg. Regarding thermal storage performance, LA-MXene exhibited outstanding performance compared to LA-MXene/GNP in terms of enthalpy efficiency (λ) and relative enthalpy efficiency (η), achieving 95.4% and 96.1%, respectively. This is supported by the XPS spectra, which show that the crosslinking structure acted as a barrier, reinforcing the material and preventing further thermal degradation. This has resulted in robust and denser shells that significantly improved light absorption, enhancing both the photothermal conversion and thermal energy storage efficiency of LA/MXene. The present study reveals that LA-MXene is a promising and optimal candidate for the feasibility and reliability of TES in solar renewable energy applications. It was observed that the incorporation of exclusive MXene may effectively address the limitations of LA as a conventional PCM and surpass the traditional role of GNP. This study offers valuable insights into the superior performance of MXene alone, eliminating the need for doping with various nanomaterials and thereby reducing the complexity in synthesizing the PCM.
Solar thermal energy storage (TES) is an outstanding innovation that can help solar technology remain relevant during nighttime and cloudy days. TES using phase change material (PCM) is an avant-garde solution for a clean and renewable energy transition. The present study unveils the unique potential of MXene as a performance enhancer in lauric acid (LA), which functions as a base PCM. The addition of graphene nanoplatelet (GNP) into the LA-MXene composite is prepared to comprehend and evaluate the benefits and detriments of adding carbon-based nanomaterial into the PCM via a two-step homogenizing method. A similar weight percentage of MXene and GNP at 0.75 was used for composite synthesis. The study found that the enthalpy of LA-MXene is comparable to LA at 169.87 J/kg and greater than LA-MXene/GNP, which has 137.53 J/kg. Regarding thermal storage performance, LA-MXene exhibited outstanding performance compared to LA-MXene/GNP in terms of enthalpy efficiency (λ) and relative enthalpy efficiency (η), achieving 95.4% and 96.1%, respectively. This is supported by the XPS spectra, which show that the crosslinking structure acted as a barrier, reinforcing the material and preventing further thermal degradation. This has resulted in robust and denser shells that significantly improved light absorption, enhancing both the photothermal conversion and thermal energy storage efficiency of LA/MXene. The present study reveals that LA-MXene is a promising and optimal candidate for the feasibility and reliability of TES in solar renewable energy applications. It was observed that the incorporation of exclusive MXene may effectively address the limitations of LA as a conventional PCM and surpass the traditional role of GNP. This study offers valuable insights into the superior performance of MXene alone, eliminating the need for doping with various nanomaterials and thereby reducing the complexity in synthesizing the PCM.Solar thermal energy storage (TES) is an outstanding innovation that can help solar technology remain relevant during nighttime and cloudy days. TES using phase change material (PCM) is an avant-garde solution for a clean and renewable energy transition. The present study unveils the unique potential of MXene as a performance enhancer in lauric acid (LA), which functions as a base PCM. The addition of graphene nanoplatelet (GNP) into the LA-MXene composite is prepared to comprehend and evaluate the benefits and detriments of adding carbon-based nanomaterial into the PCM via a two-step homogenizing method. A similar weight percentage of MXene and GNP at 0.75 was used for composite synthesis. The study found that the enthalpy of LA-MXene is comparable to LA at 169.87 J/kg and greater than LA-MXene/GNP, which has 137.53 J/kg. Regarding thermal storage performance, LA-MXene exhibited outstanding performance compared to LA-MXene/GNP in terms of enthalpy efficiency (λ) and relative enthalpy efficiency (η), achieving 95.4% and 96.1%, respectively. This is supported by the XPS spectra, which show that the crosslinking structure acted as a barrier, reinforcing the material and preventing further thermal degradation. This has resulted in robust and denser shells that significantly improved light absorption, enhancing both the photothermal conversion and thermal energy storage efficiency of LA/MXene. The present study reveals that LA-MXene is a promising and optimal candidate for the feasibility and reliability of TES in solar renewable energy applications. It was observed that the incorporation of exclusive MXene may effectively address the limitations of LA as a conventional PCM and surpass the traditional role of GNP. This study offers valuable insights into the superior performance of MXene alone, eliminating the need for doping with various nanomaterials and thereby reducing the complexity in synthesizing the PCM.
Author Hashim, Nur Awanis
Mansor, Muhammad Syahir
Moharir, Sona R
Rashid, Amirul Aminur
Abdul Manaf, Norhuda
Author_xml – sequence: 1
  givenname: Amirul Aminur
  surname: Rashid
  fullname: Rashid, Amirul Aminur
  organization: Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
– sequence: 2
  givenname: Muhammad Syahir
  surname: Mansor
  fullname: Mansor, Muhammad Syahir
  organization: Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
– sequence: 3
  givenname: Nur Awanis
  surname: Hashim
  fullname: Hashim, Nur Awanis
  organization: Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
– sequence: 4
  givenname: Sona R
  surname: Moharir
  fullname: Moharir, Sona R
  organization: Chemical Engineering Department, Bharati Vidyapeeth College of Engineering, Navi Mumbai, Maharashtra, India
– sequence: 5
  givenname: Norhuda
  orcidid: 0000-0002-4548-6425
  surname: Abdul Manaf
  fullname: Abdul Manaf, Norhuda
  email: norhuda.kl@utm.my
  organization: Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia. norhuda.kl@utm.my
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39017877$$D View this record in MEDLINE/PubMed
BookMark eNpNkEtLAzEQx4MoatUv4EFy9LKa1ybZoxRfoHip4C2ku7NtZJusSbbSb-_WqniZGfg_YH4TtO-DB4TOKbmihKjrRCkvZUGYKLjgmhV6Dx1TSUWhRFXt_7uP0CSld0IYqZg6REe8IlRppY7R-tWvwXXOL3BeAh68-xgA9yGDz852OLT4-Q084E-Xl9j65vsIQ8aLaPvlVvHWh76zGTrIuA1xWxRXY3YU42KDUw7RLgDbvu9cbbMLPp2ig9Z2Cc5-9gma3d3Opg_F08v94_TmqairShWiVpyLSrbSWmnbhoLVtGJMNMAaaNlcKwqkKaHhtdZElnLe1o0EXnIpynGeoMtdbR_D-FfKZuVSDV1nPYQhGU70yIEKLkcr21nrGFKK0Jo-upWNG0OJ2eI2O9xmxG2-cRs9hi5--of5Cpq_yC9f_gUwMH94
Cites_doi 10.1016/j.tca.2019.03.037
10.1016/j.ijheatmasstransfer.2019.118619
10.1016/j.carbon.2010.10.014
10.3390/app9030469
10.1016/j.carbon.2023.118359
10.1007/s10973-020-09638-3
10.1016/j.jsamd.2022.100462
10.1038/s41598-020-67849-y
10.1016/j.cej.2021.130466
10.1016/j.cplett.2022.139942
10.1007/s42114-022-00487-2
10.1002/pc.25361
10.1016/j.energy.2011.07.019
10.1016/j.snb.2022.133271
10.1016/j.cherd.2023.02.005
10.1039/D2RA02345H
10.1007/s11431-021-1997-4
10.1016/j.compositesb.2019.107372
10.1016/j.enconman.2022.116432
10.1016/j.apenergy.2018.11.091
10.1016/j.jelechem.2022.117050
10.1021/acs.energyfuels.0c04275
10.1016/j.ijhydene.2022.07.151
10.1016/j.est.2020.101773
10.1016/j.apenergy.2014.08.100
10.1016/j.mser.2018.06.002
10.1016/j.renene.2019.08.098
10.1016/j.est.2019.101163
10.1063/5.0001366
10.1016/j.ijthermalsci.2020.106446
10.1007/s10853-021-06659-7
10.1039/C9TA03962G
10.1016/j.applthermaleng.2010.04.031
10.1016/j.enbuild.2015.06.059
10.1016/j.renene.2021.05.019
10.1016/j.ccr.2022.214755
10.1002/adma.201102306
10.1016/j.rser.2023.113904
10.1016/j.solmat.2019.110229
10.1080/15567036.2021.2007312
10.3390/app10062111
10.1007/s11356-021-16220-3
10.1021/acsomega.2c01420
10.1016/j.bios.2021.113243
10.1021/acsami.9b04349
10.1016/j.enbuild.2021.110799
10.1016/j.jcis.2019.12.091
10.1098/rsos.181664
10.1039/C6TA06463A
10.3390/su15010516
10.1016/j.jssc.2023.124166
10.1002/er.5542
10.1016/j.mtchem.2019.08.010
10.1016/j.jmrt.2023.10.081
10.1021/acs.jpclett.9b02605
10.1016/j.molliq.2019.04.132
10.1016/j.renene.2021.03.071
10.3390/inorganics12040112
10.1016/j.cej.2023.144017
10.1115/1.2928010
10.1016/j.solmat.2020.110850
10.1016/j.tca.2018.04.002
10.1016/j.chemosphere.2022.133563
10.1016/j.ensm.2022.12.037
10.1007/s42452-020-03780-1
10.1039/D0RA08398D
10.1016/j.est.2023.107219
10.1016/j.fuel.2022.126279
ContentType Journal Article
Copyright 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Copyright_xml – notice: 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
DBID NPM
AAYXX
CITATION
7X8
DOI 10.1007/s11356-024-34382-8
DatabaseName PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
EISSN 1614-7499
ExternalDocumentID 10_1007_s11356_024_34382_8
39017877
Genre Journal Article
GrantInformation_xml – fundername: Universiti Teknologi Malaysia Fundamental Research (UTMFR)
  grantid: Q.K130000.3843.22H31
GroupedDBID ---
-5A
-5G
-5~
-BR
-EM
-~C
.VR
06D
0R~
0VY
199
1N0
203
29G
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67M
67Z
6NX
78A
7WY
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPRK
ACREN
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BENPR
BGNMA
BHPHI
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EDH
EIOEI
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
L8X
LAS
LLZTM
M4Y
MA-
N9A
NB0
NF0
NPM
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P2P
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNS
ROL
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UOJIU
UTJUX
VC2
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z8P
Z8Q
Z8S
ZMTXR
~02
~KM
AAYXX
ACIPQ
CITATION
7X8
ID FETCH-LOGICAL-c997-4c733496f6aa6afd1ea819224de2def2b871e0d5ed3c880656bfcd6e353645353
ISSN 1614-7499
IngestDate Sat Oct 26 04:38:45 EDT 2024
Thu Sep 12 21:27:15 EDT 2024
Sat Nov 02 12:20:09 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Graphene nanoplatelet
Thermal energy storage
Phase change material
Mxene
Photothermal
Language English
License 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c997-4c733496f6aa6afd1ea819224de2def2b871e0d5ed3c880656bfcd6e353645353
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4548-6425
PMID 39017877
PQID 3081781436
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3081781436
crossref_primary_10_1007_s11356_024_34382_8
pubmed_primary_39017877
PublicationCentury 2000
PublicationDate 2024-Jul-17
2024-07-17
20240717
PublicationDateYYYYMMDD 2024-07-17
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-Jul-17
  day: 17
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
PublicationTitle Environmental science and pollution research international
PublicationTitleAlternate Environ Sci Pollut Res Int
PublicationYear 2024
References A Sathishkumar (34382_CR46) 2023; 45
A Siahpush (34382_CR50) 2008; 130
D Wang (34382_CR57) 2021; 220
34382_CR68
N Parashar (34382_CR40) 2021; 144
Q Tang (34382_CR54) 2020; 564
X Wang (34382_CR60) 2022; 65
34382_CR20
A Pan (34382_CR38) 2019; 10
Y Pan (34382_CR39) 2020; 41
H Cheng (34382_CR7) 2022; 5
I Mahar (34382_CR30) 2023; 191
Q Wang (34382_CR59) 2022; 57
C Zhu (34382_CR69) 2020; 27
Y Tian (34382_CR55) 2011; 36
NH Solangi (34382_CR51) 2022; 273
Z Mohammed (34382_CR34) 2020; 2
34382_CR13
P Lin (34382_CR25) 2020; 206
T Xia (34382_CR62) 2021; 183
34382_CR15
ZR Li (34382_CR23) 2023; 55
X Lu (34382_CR28) 2019; 177
H Zhang (34382_CR65) 2021; 175
T Batakliev (34382_CR3) 2019; 9
AA Khan (34382_CR18) 2023; 15
K Liang (34382_CR24) 2018; 664
X Wei (34382_CR61) 2019; 236
Z Fan (34382_CR10) 2022; 7
M Mehrali (34382_CR32) 2014; 135
Q Zhang (34382_CR66) 2023; 333
V Mayilvelnathan (34382_CR31) 2020; 155
D Jayathunga (34382_CR16) 2024; 189
R Naresh (34382_CR37) 2022; 7
Y Qu (34382_CR43) 2020; 146
PKS Rathore (34382_CR44) 2021; 236
D Zhou (34382_CR67) 2020; 10
X Fan (34382_CR9) 2019; 7
Y Momose (34382_CR35) 2019; 10
A Ezhil Vilian (34382_CR8) 2023; 469
N Gupta (34382_CR12) 2020; 32
34382_CR49
X Liu (34382_CR26) 2021; 35
O Salim (34382_CR45) 2019; 14
L Yang (34382_CR64) 2020; 44
M Naguib (34382_CR36) 2011; 23
M Sun (34382_CR52) 2024; 12
FEA Latif (34382_CR21) 2022; 471
M Wang (34382_CR58) 2021; 172
Z Chen (34382_CR5) 2010; 30
M Li (34382_CR22) 2019; 6
T Qian (34382_CR42) 2019; 11
X Fu (34382_CR11) 2015; 104
YC Sekhar (34382_CR47) 2022; 47
P Sundaram (34382_CR53) 2023; 64
C Huang (34382_CR14) 2018; 132
X Liu (34382_CR27) 2022; 12
Y Sheth (34382_CR48) 2022; 293
M Vivekananthan (34382_CR56) 2019; 676
34382_CR2
34382_CR4
34382_CR33
34382_CR41
MAAM Abdah (34382_CR1) 2023; 928
SY Yang (34382_CR63) 2011; 49
S Zhu (34382_CR70) 2020; 10
Y Luo (34382_CR29) 2021; 420
Z Khan (34382_CR17) 2019; 144
C Kim (34382_CR19) 2022; 29
W Chen (34382_CR6) 2023; 27
References_xml – volume: 676
  start-page: 94
  year: 2019
  ident: 34382_CR56
  publication-title: Thermochim Acta
  doi: 10.1016/j.tca.2019.03.037
  contributor:
    fullname: M Vivekananthan
– volume: 144
  start-page: 118619
  year: 2019
  ident: 34382_CR17
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2019.118619
  contributor:
    fullname: Z Khan
– volume: 49
  start-page: 793
  issue: 3
  year: 2011
  ident: 34382_CR63
  publication-title: Carbon
  doi: 10.1016/j.carbon.2010.10.014
  contributor:
    fullname: SY Yang
– volume: 9
  start-page: 469
  issue: 3
  year: 2019
  ident: 34382_CR3
  publication-title: Appl Sci
  doi: 10.3390/app9030469
  contributor:
    fullname: T Batakliev
– ident: 34382_CR49
  doi: 10.1016/j.carbon.2023.118359
– volume: 144
  start-page: 1175
  year: 2021
  ident: 34382_CR40
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-020-09638-3
  contributor:
    fullname: N Parashar
– volume: 7
  start-page: 100462
  issue: 3
  year: 2022
  ident: 34382_CR37
  publication-title: J Sci: Adv Mater Devices
  doi: 10.1016/j.jsamd.2022.100462
  contributor:
    fullname: R Naresh
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  ident: 34382_CR67
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-67849-y
  contributor:
    fullname: D Zhou
– volume: 420
  start-page: 130466
  year: 2021
  ident: 34382_CR29
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2021.130466
  contributor:
    fullname: Y Luo
– ident: 34382_CR13
  doi: 10.1016/j.cplett.2022.139942
– volume: 5
  start-page: 755
  issue: 2
  year: 2022
  ident: 34382_CR7
  publication-title: Adv Compos Hybrid Mater
  doi: 10.1007/s42114-022-00487-2
  contributor:
    fullname: H Cheng
– volume: 41
  start-page: 210
  issue: 1
  year: 2020
  ident: 34382_CR39
  publication-title: Polym Compos
  doi: 10.1002/pc.25361
  contributor:
    fullname: Y Pan
– volume: 36
  start-page: 5539
  year: 2011
  ident: 34382_CR55
  publication-title: Energy
  doi: 10.1016/j.energy.2011.07.019
  contributor:
    fullname: Y Tian
– ident: 34382_CR68
  doi: 10.1016/j.snb.2022.133271
– volume: 191
  start-page: 462
  year: 2023
  ident: 34382_CR30
  publication-title: Chem Eng Res Des
  doi: 10.1016/j.cherd.2023.02.005
  contributor:
    fullname: I Mahar
– volume: 12
  start-page: 23860
  year: 2022
  ident: 34382_CR27
  publication-title: RSC Adv
  doi: 10.1039/D2RA02345H
  contributor:
    fullname: X Liu
– volume: 65
  start-page: 882
  year: 2022
  ident: 34382_CR60
  publication-title: Sci China Technol Sci
  doi: 10.1007/s11431-021-1997-4
  contributor:
    fullname: X Wang
– volume: 177
  start-page: 107372
  year: 2019
  ident: 34382_CR28
  publication-title: Compos B Eng
  doi: 10.1016/j.compositesb.2019.107372
  contributor:
    fullname: X Lu
– volume: 273
  start-page: 116432
  year: 2022
  ident: 34382_CR51
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2022.116432
  contributor:
    fullname: NH Solangi
– volume: 236
  start-page: 70
  year: 2019
  ident: 34382_CR61
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.11.091
  contributor:
    fullname: X Wei
– volume: 928
  start-page: 5
  year: 2023
  ident: 34382_CR1
  publication-title: J Electroanal Chem
  doi: 10.1016/j.jelechem.2022.117050
  contributor:
    fullname: MAAM Abdah
– volume: 35
  start-page: 2805
  issue: 3
  year: 2021
  ident: 34382_CR26
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.0c04275
  contributor:
    fullname: X Liu
– volume: 47
  start-page: 40407
  issue: 95
  year: 2022
  ident: 34382_CR47
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2022.07.151
  contributor:
    fullname: YC Sekhar
– volume: 32
  start-page: 101773
  year: 2020
  ident: 34382_CR12
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2020.101773
  contributor:
    fullname: N Gupta
– volume: 135
  start-page: 339
  year: 2014
  ident: 34382_CR32
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.08.100
  contributor:
    fullname: M Mehrali
– volume: 132
  start-page: 1
  year: 2018
  ident: 34382_CR14
  publication-title: Mater Sci Eng R Rep
  doi: 10.1016/j.mser.2018.06.002
  contributor:
    fullname: C Huang
– volume: 146
  start-page: 2637
  year: 2020
  ident: 34382_CR43
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2019.08.098
  contributor:
    fullname: Y Qu
– volume: 27
  start-page: 101163
  year: 2020
  ident: 34382_CR69
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2019.101163
  contributor:
    fullname: C Zhu
– ident: 34382_CR20
  doi: 10.1063/5.0001366
– volume: 155
  start-page: 106446
  year: 2020
  ident: 34382_CR31
  publication-title: Int J Therm Sci
  doi: 10.1016/j.ijthermalsci.2020.106446
  contributor:
    fullname: V Mayilvelnathan
– volume: 57
  start-page: 1962
  year: 2022
  ident: 34382_CR59
  publication-title: J Mater Sci
  doi: 10.1007/s10853-021-06659-7
  contributor:
    fullname: Q Wang
– volume: 7
  start-page: 14319
  year: 2019
  ident: 34382_CR9
  publication-title: J Mater Chem A
  doi: 10.1039/C9TA03962G
  contributor:
    fullname: X Fan
– volume: 30
  start-page: 1967
  year: 2010
  ident: 34382_CR5
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2010.04.031
  contributor:
    fullname: Z Chen
– volume: 104
  start-page: 244
  year: 2015
  ident: 34382_CR11
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2015.06.059
  contributor:
    fullname: X Fu
– volume: 175
  start-page: 307
  year: 2021
  ident: 34382_CR65
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2021.05.019
  contributor:
    fullname: H Zhang
– volume: 471
  start-page: 214755
  year: 2022
  ident: 34382_CR21
  publication-title: Coord Chem Rev
  doi: 10.1016/j.ccr.2022.214755
  contributor:
    fullname: FEA Latif
– volume: 23
  start-page: 4248
  year: 2011
  ident: 34382_CR36
  publication-title: Adv Mater
  doi: 10.1002/adma.201102306
  contributor:
    fullname: M Naguib
– volume: 189
  start-page: 113904
  year: 2024
  ident: 34382_CR16
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2023.113904
  contributor:
    fullname: D Jayathunga
– volume: 206
  start-page: 110229
  year: 2020
  ident: 34382_CR25
  publication-title: Sol Energy Mater Sol Cells
  doi: 10.1016/j.solmat.2019.110229
  contributor:
    fullname: P Lin
– volume: 45
  start-page: 1187
  year: 2023
  ident: 34382_CR46
  publication-title: Energy Sources Part A: Recov Util Environ Eff
  doi: 10.1080/15567036.2021.2007312
  contributor:
    fullname: A Sathishkumar
– volume: 10
  start-page: 2111
  issue: 6
  year: 2019
  ident: 34382_CR35
  publication-title: Appl Sci
  doi: 10.3390/app10062111
  contributor:
    fullname: Y Momose
– volume: 29
  start-page: 8731
  year: 2022
  ident: 34382_CR19
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-021-16220-3
  contributor:
    fullname: C Kim
– volume: 7
  start-page: 16097
  year: 2022
  ident: 34382_CR10
  publication-title: ACS Omega
  doi: 10.1021/acsomega.2c01420
  contributor:
    fullname: Z Fan
– volume: 183
  start-page: 113243
  year: 2021
  ident: 34382_CR62
  publication-title: Biosens Bioelectron
  doi: 10.1016/j.bios.2021.113243
  contributor:
    fullname: T Xia
– volume: 11
  start-page: 29698
  issue: 33
  year: 2019
  ident: 34382_CR42
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.9b04349
  contributor:
    fullname: T Qian
– volume: 236
  start-page: 110799
  year: 2021
  ident: 34382_CR44
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2021.110799
  contributor:
    fullname: PKS Rathore
– volume: 564
  start-page: 406
  year: 2020
  ident: 34382_CR54
  publication-title: J Colloid Interface Sci
  doi: 10.1016/j.jcis.2019.12.091
  contributor:
    fullname: Q Tang
– volume: 6
  start-page: 181664
  year: 2019
  ident: 34382_CR22
  publication-title: R Soc Open Sci
  doi: 10.1098/rsos.181664
  contributor:
    fullname: M Li
– ident: 34382_CR4
  doi: 10.1039/C6TA06463A
– volume: 15
  start-page: 516
  year: 2023
  ident: 34382_CR18
  publication-title: Sustainability
  doi: 10.3390/su15010516
  contributor:
    fullname: AA Khan
– ident: 34382_CR41
  doi: 10.1016/j.jssc.2023.124166
– volume: 44
  start-page: 8555
  year: 2020
  ident: 34382_CR64
  publication-title: Int J Energy Res
  doi: 10.1002/er.5542
  contributor:
    fullname: L Yang
– volume: 14
  start-page: 100191
  year: 2019
  ident: 34382_CR45
  publication-title: Mater Today Chem
  doi: 10.1016/j.mtchem.2019.08.010
  contributor:
    fullname: O Salim
– volume: 27
  start-page: 1857
  year: 2023
  ident: 34382_CR6
  publication-title: J Mater Res Technol
  doi: 10.1016/j.jmrt.2023.10.081
  contributor:
    fullname: W Chen
– volume: 10
  start-page: 6590
  year: 2019
  ident: 34382_CR38
  publication-title: J Phys Chem Lett
  doi: 10.1021/acs.jpclett.9b02605
  contributor:
    fullname: A Pan
– ident: 34382_CR33
  doi: 10.1016/j.molliq.2019.04.132
– volume: 172
  start-page: 599
  year: 2021
  ident: 34382_CR58
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2021.03.071
  contributor:
    fullname: M Wang
– volume: 12
  start-page: 112
  issue: 4
  year: 2024
  ident: 34382_CR52
  publication-title: Inorganics
  doi: 10.3390/inorganics12040112
  contributor:
    fullname: M Sun
– volume: 469
  start-page: 144017
  year: 2023
  ident: 34382_CR8
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2023.144017
  contributor:
    fullname: A Ezhil Vilian
– volume: 130
  start-page: 082301
  issue: 8
  year: 2008
  ident: 34382_CR50
  publication-title: J Heat Transfer
  doi: 10.1115/1.2928010
  contributor:
    fullname: A Siahpush
– volume: 220
  start-page: 110850
  year: 2021
  ident: 34382_CR57
  publication-title: Sol Energy Mater Sol Cells
  doi: 10.1016/j.solmat.2020.110850
  contributor:
    fullname: D Wang
– ident: 34382_CR15
– ident: 34382_CR2
– volume: 664
  start-page: 1
  year: 2018
  ident: 34382_CR24
  publication-title: Thermochim Acta
  doi: 10.1016/j.tca.2018.04.002
  contributor:
    fullname: K Liang
– volume: 293
  start-page: 133563
  year: 2022
  ident: 34382_CR48
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2022.133563
  contributor:
    fullname: Y Sheth
– volume: 55
  start-page: 727
  year: 2023
  ident: 34382_CR23
  publication-title: Energy Storage Mater
  doi: 10.1016/j.ensm.2022.12.037
  contributor:
    fullname: ZR Li
– volume: 2
  start-page: 1959
  year: 2020
  ident: 34382_CR34
  publication-title: SN Appl Sci
  doi: 10.1007/s42452-020-03780-1
  contributor:
    fullname: Z Mohammed
– volume: 10
  start-page: 44903
  year: 2020
  ident: 34382_CR70
  publication-title: RSC Adv
  doi: 10.1039/D0RA08398D
  contributor:
    fullname: S Zhu
– volume: 64
  start-page: 107219
  year: 2023
  ident: 34382_CR53
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2023.107219
  contributor:
    fullname: P Sundaram
– volume: 333
  start-page: 126279
  year: 2023
  ident: 34382_CR66
  publication-title: Fuel
  doi: 10.1016/j.fuel.2022.126279
  contributor:
    fullname: Q Zhang
SSID ssj0020927
Score 2.3138056
Snippet Solar thermal energy storage (TES) is an outstanding innovation that can help solar technology remain relevant during nighttime and cloudy days. TES using...
SourceID proquest
crossref
pubmed
SourceType Aggregation Database
Index Database
Title Unveiling the unique potential of MXene with and without graphene nanoplatelet for thermal energy storage applications
URI https://www.ncbi.nlm.nih.gov/pubmed/39017877
https://www.proquest.com/docview/3081781436
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Na9swFBdpetll7Ktbug802C1o2PGXfAxrSg9Nd5gL6ckoloQNiR2cumP__d6zZDtZGXSHXRSjYAv0-_H09D4J-eJFroDLiWAyiAPmc-Uwzl3N4izOtOIBDzP06F79iG5W_GLhL0ajriHTMPdfkYY5wBozZ_8B7f6jMAHPgDmMgDqMT8L9tnxQxaZLgmpMfdZddY9RQUbxXK5Avg1JbfiAwclt6Wr8pxRltduADgqQdlGIIL43U2XyBDGeEiN9Dn3fRwb-IXeuy7i0WQk77KvcEs7WGMrbchW9RXJwOu3zwhi8t0XdbPCnbPow4iUcr8bKsGxysd0K0Jl_ibyoB3EK7xuiN_V0_lOY8ik2ujgXdWG6jcGaNmDS2j1mPmurWR6IalAsWOSb9kpf1eO5R4eDY5OlXS_AwGufeegFZXw4Cjv3_8339PL2-jpNFqvkhJzOQIgFY3I6X93dXfTXeSduGwL3a9qULJOY-ecax2rPX-4yrU6TvCDP7WWEzg2LXpKRKl-RsyP8qBX--9fkoacWBUZQQy3aU4tWmrbUosgoCnhTSy3aUYseUosCtailFjXUopZa9JBab0hyuUi-XTHbtoNlWNrXzyIPuxDoUIhQaOkqgUX3Zr5UM6n0bA1XdOXIQEkv4-jWD9c6k6HyAvSIw3hGxmVVqneERq7k0TqWaw3X_gw3PMi0p0JXB44XcDkh025T050pzpIOZbgRghQgSFsIUj4hn7t9T0GGomNMlKpq9qkHejGWfvPCCXlrAOm_hzZBONSi8ye8_Z48G5j6gYzv60Z9JCd72Xyy5PkN69mfsA
link.rule.ids 315,782,786,27935,27936
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unveiling+the+unique+potential+of+MXene+with+and+without+graphene+nanoplatelet+for+thermal+energy+storage+applications&rft.jtitle=Environmental+science+and+pollution+research+international&rft.au=Rashid%2C+Amirul+Aminur&rft.au=Mansor%2C+Muhammad+Syahir&rft.au=Hashim%2C+Nur+Awanis&rft.au=Moharir%2C+Sona+R&rft.date=2024-07-17&rft.issn=1614-7499&rft.eissn=1614-7499&rft_id=info:doi/10.1007%2Fs11356-024-34382-8&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-7499&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-7499&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-7499&client=summon