Joint Angle and Torque Estimation Using Multifrequency Electrical Impedance Myography and Surface Electromyography
This article explores the feasibility of combining surface electromyography (sEMG) and multifrequency electrical impedance myography (mfEIM) for predicting joint angles and torques. We utilize a current-limited multifrequency electrical impedance spectrometer to simultaneously perform mfEIM on the b...
Saved in:
Published in: | IEEE sensors journal Vol. 24; no. 20; pp. 32651 - 32659 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
New York
IEEE
15-10-2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | This article explores the feasibility of combining surface electromyography (sEMG) and multifrequency electrical impedance myography (mfEIM) for predicting joint angles and torques. We utilize a current-limited multifrequency electrical impedance spectrometer to simultaneously perform mfEIM on the biceps brachii and triceps brachii at 14 frequencies. The same system also measures the sEMG signals using the same electrodes. Measurements are conducted while subjects perform tasks in a 1-degree-of-freedom (DOF) exoskeleton, which enables the measurement of elbow joint torque and angle. We train time-delay neural networks (TDNNs) to model the relationships between mfEIM, sEMG, joint torque, and joint angle. The results demonstrate that the sEMG signal can predict joint torque and that mfEIM can predict joint angle. Additionally, we find indications that a combination of sEMG and mfEIM enhances joint torque predictions compared to using sEMG alone. We also determine the delays between the sEMG, mfEIM signals, and the joint angle and torque, finding that the joint torque signal has a delay relative to the sEMG signal of 155 ms during an isometric exercise and 125 ms during dynamic tasks. These results suggest that combining sEMG and mfEIM measurements could provide additional insights during biomedical experiments. |
---|---|
AbstractList | This article explores the feasibility of combining surface electromyography (sEMG) and multifrequency electrical impedance myography (mfEIM) for predicting joint angles and torques. We utilize a current-limited multifrequency electrical impedance spectrometer to simultaneously perform mfEIM on the biceps brachii and triceps brachii at 14 frequencies. The same system also measures the sEMG signals using the same electrodes. Measurements are conducted while subjects perform tasks in a 1-degree-of-freedom (DOF) exoskeleton, which enables the measurement of elbow joint torque and angle. We train time-delay neural networks (TDNNs) to model the relationships between mfEIM, sEMG, joint torque, and joint angle. The results demonstrate that the sEMG signal can predict joint torque and that mfEIM can predict joint angle. Additionally, we find indications that a combination of sEMG and mfEIM enhances joint torque predictions compared to using sEMG alone. We also determine the delays between the sEMG, mfEIM signals, and the joint angle and torque, finding that the joint torque signal has a delay relative to the sEMG signal of 155 ms during an isometric exercise and 125 ms during dynamic tasks. These results suggest that combining sEMG and mfEIM measurements could provide additional insights during biomedical experiments. |
Author | Schouten, Martijn Baars, Ewout C. Krijnen, Gijs Yavuz, Utku S. |
Author_xml | – sequence: 1 givenname: Martijn orcidid: 0000-0001-9774-1195 surname: Schouten fullname: Schouten, Martijn email: m.schouten@utwente.nl organization: Robotics and Mechatronics Research Group, University of Twente, Enschede, The Netherlands – sequence: 2 givenname: Ewout C. surname: Baars fullname: Baars, Ewout C. email: e.baars@alumnus.utwente.nl organization: Robotics and Mechatronics Research Group, University of Twente, Enschede, The Netherlands – sequence: 3 givenname: Utku S. orcidid: 0000-0002-6968-8064 surname: Yavuz fullname: Yavuz, Utku S. email: s.u.yavuz@utwente.nl organization: Biomedical Signals and Systems Research Group, University of Twente, Enschede, The Netherlands – sequence: 4 givenname: Gijs orcidid: 0000-0001-9537-7123 surname: Krijnen fullname: Krijnen, Gijs email: gijs.krijnen@utwente.nl organization: Robotics and Mechatronics Research Group, University of Twente, Enschede, The Netherlands |
BookMark | eNpNkD1PwzAQhi1UJNrCD0BisMSc4ovtxB6rqkCrFoYWiS1yE6ekSu3gJEP-PQ4pEtOd7p73Pt4JGhlrNEL3QGYARD6td8u3WUhCNqOMyVBEV2gMnIsAYiZGfU5JwGj8eYMmdX0iBGTM4zFya1uYBs_NsdRYmQzvrftuNV7WTXFWTWEN_qgLc8TbtmyK3GnfNGmHl6VOG1ekqsSrc6UzZVKNt509OlV9db-Tdq3Lla8OqD3_NW_Rda7KWt9d4hTtn5f7xWuweX9ZLeabIJXAAsmyMOIg4iiXGQdGpCaZYKHkIRORgPCgNE8pISSjUkmeglJecIhzkFyyiE7R4zC2ctYfXTfJybbO-I0JBYiBckGYp2CgUmfr2uk8qZx_3HUJkKR3NumdTXpnk4uzXvMwaAqt9T8-ionH6A9Kbnbn |
CODEN | ISJEAZ |
Cites_doi | 10.1109/TBME.1980.326652 10.3389/fnbot.2021.734525 10.26603/ijspt20170718 10.4085/1062-6050-45.2.181 10.1016/0021-9290(95)00178-6 10.1016/j.jbiomech.2022.111383 10.1109/TASE.2020.3033664 10.1109/BioRob49111.2020.9224325 10.1016/j.jelekin.2014.12.006 10.3389/frobt.2022.869476 10.3389/fphys.2018.00445 10.1016/j.procs.2017.01.209 10.3390/s20174770 10.1016/j.jbiomech.2021.110637 10.1088/1742-6596/2327/1/012075 10.1109/10.844217 10.1002/mus.10375 10.3389/fnbot.2021.659311 10.1109/IJCNN48605.2020.9206772 10.1016/j.clinph.2009.10.039 10.1109/TSMC.2016.2521823 10.1109/EMBC.2019.8856792 10.3990/1.9789036556200 10.1109/BIOROB.2014.6913870 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/JSEN.2024.3449286 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library Online CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering |
EISSN | 1558-1748 |
EndPage | 32659 |
ExternalDocumentID | 10_1109_JSEN_2024_3449286 10670024 |
Genre | orig-research |
GrantInformation_xml | – fundername: Dutch Research Council (NWO) and Twente Medical Systems International through the Research Program Wearable Robotics grantid: P16-05 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AASAJ ABQJQ ACGFO ACGFS ACIWK AENEX AJQPL AKJIK ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RIG RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c914-94d2651876f9d51409e0d842952486812bae5c3000d39a95c1aa265b7f1959463 |
IEDL.DBID | RIE |
ISSN | 1530-437X |
IngestDate | Thu Oct 17 04:22:47 EDT 2024 Wed Oct 23 14:25:28 EDT 2024 Wed Oct 23 05:52:15 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c914-94d2651876f9d51409e0d842952486812bae5c3000d39a95c1aa265b7f1959463 |
ORCID | 0000-0001-9537-7123 0000-0001-9774-1195 0000-0002-6968-8064 |
PQID | 3117135804 |
PQPubID | 75733 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1109_JSEN_2024_3449286 ieee_primary_10670024 proquest_journals_3117135804 |
PublicationCentury | 2000 |
PublicationDate | 2024-Oct.15,-15 |
PublicationDateYYYYMMDD | 2024-10-15 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-Oct.15,-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE sensors journal |
PublicationTitleAbbrev | JSEN |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref37 ref14 (ref33) 2023 ref11 Loshchilov (ref31) Schouten (ref34) 2021 ref10 ref32 ref2 ref1 ref17 ref16 Chng (ref27) 2022 Schouten (ref18) 2022 ref24 ref25 Schouten (ref23) 2024 ref22 Schouten (ref20) 2024 ref28 (ref19) 2024 ref29 ref8 De Winter (ref36) 2013; 18 ref7 (ref30) 2023 Mathai (ref35) 2018 ref9 ref4 ref3 (ref21) 2024 ref6 ref5 Press (ref26) 1991; 56 |
References_xml | – ident: ref32 doi: 10.1109/TBME.1980.326652 – ident: ref10 doi: 10.3389/fnbot.2021.734525 – ident: ref4 doi: 10.26603/ijspt20170718 – volume-title: Using Normalization Layers to Improve Deep Learning Models year: 2022 ident: ref27 contributor: fullname: Chng – volume-title: 1DOFsetup year: 2022 ident: ref18 contributor: fullname: Schouten – ident: ref3 doi: 10.4085/1062-6050-45.2.181 – ident: ref24 doi: 10.1016/0021-9290(95)00178-6 – ident: ref14 doi: 10.1016/j.jbiomech.2022.111383 – ident: ref15 doi: 10.1109/TASE.2020.3033664 – ident: ref1 doi: 10.1109/BioRob49111.2020.9224325 – volume-title: 1DOFsetup year: 2024 ident: ref19 – volume-title: TiePieLCR Hardware year: 2024 ident: ref21 – ident: ref17 doi: 10.1016/j.jelekin.2014.12.006 – ident: ref13 doi: 10.3389/frobt.2022.869476 – volume: 18 start-page: 10 issue: 1 year: 2013 ident: ref36 article-title: Using the students t-test with extremely small sample sizes publication-title: Practical Assessment, Res., Eval. contributor: fullname: De Winter – ident: ref5 doi: 10.3389/fphys.2018.00445 – ident: ref12 doi: 10.1016/j.procs.2017.01.209 – volume-title: TiePieLCR Hardware year: 2024 ident: ref20 contributor: fullname: Schouten – ident: ref6 doi: 10.3390/s20174770 – ident: ref2 doi: 10.1016/j.jbiomech.2021.110637 – ident: ref28 doi: 10.1088/1742-6596/2327/1/012075 – ident: ref25 doi: 10.1109/10.844217 – year: 2021 ident: ref34 article-title: Inductive 3D printer XY calibration GUI contributor: fullname: Schouten – volume: 56 issue: 193 volume-title: Numerical Recipes in Pascal—The Art of Scientific Computing year: 1991 ident: ref26 contributor: fullname: Press – ident: ref16 doi: 10.1002/mus.10375 – ident: ref11 doi: 10.3389/fnbot.2021.659311 – ident: ref29 doi: 10.1109/IJCNN48605.2020.9206772 – start-page: 1 volume-title: Proc. 7th Int. Conf. Learn. Represent. (ICLR) ident: ref31 article-title: Decoupled weight decay regularization contributor: fullname: Loshchilov – volume-title: R-Squared Formula, Regression, and Interpretations year: 2023 ident: ref33 – volume-title: Probability Statistics: A Course for Physicists Engineers year: 2018 ident: ref35 contributor: fullname: Mathai – ident: ref37 doi: 10.1016/j.clinph.2009.10.039 – ident: ref7 doi: 10.1109/TSMC.2016.2521823 – ident: ref9 doi: 10.1109/EMBC.2019.8856792 – ident: ref22 doi: 10.3990/1.9789036556200 – volume-title: TiePieLCR GUI year: 2024 ident: ref23 contributor: fullname: Schouten – volume-title: View year: 2023 ident: ref30 – ident: ref8 doi: 10.1109/BIOROB.2014.6913870 |
SSID | ssj0019757 |
Score | 2.457911 |
Snippet | This article explores the feasibility of combining surface electromyography (sEMG) and multifrequency electrical impedance myography (mfEIM) for predicting... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Publisher |
StartPage | 32651 |
SubjectTerms | Biomedical measurement Control Degrees of freedom Elbow (anatomy) Electrical impedance electrical impedance myography (EIM) electrical impedance tomography (EIT) Electromyography electromyography (EMG) exoskeleton Exoskeletons Impedance multifrequency electrical impedance tomography (MFEIT) Muscles Neural networks Performance prediction Sensors time delay neural network (TDNN) Torque Torque measurement |
Title | Joint Angle and Torque Estimation Using Multifrequency Electrical Impedance Myography and Surface Electromyography |
URI | https://ieeexplore.ieee.org/document/10670024 https://www.proquest.com/docview/3117135804 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7RLsDAoxRRKMgDE5LbOLGbeKwgFVSiSzt0i-zYASRIUNoM_ffYTlpVQgxskWOfrDufz6_vO4B7JrUJe8YBZSQopplMsSBeilnKZCDMkBHKHV3Mw9kyeootTQ7eYWG01u7xmR7YT3eXr4q0skdlQ-JAJT5tQSvkUQ3W2l0Z8NDRehoP9jANwmVzhUk8PpzO45nZCvp0EFDKHW56Lwi5rCq_pmIXXyan_-zZGZw0C0k0ri1_Dgc678DxHr1gBw6bDOfvmwsop8VHvkbj_O1TI5ErtChK0w8UGxev0YvIvR5ADpGblfUL6w2KXZoca0n0YlbYyg4S9Lpp5DpJ86rMhCmtqxZf259dWEzixeMzbvIt4JQTijlV_ogRMz1mXDFLhKU9FZl4xXwaWZoyKTRLAzOHqoALzlIihGkgw8wS1NBRcAntvMj1FSB_pH3JskiY9QnVQkrFMi_0qeQet0jWHjxs9Z9816waiduNeDyxxkqssZLGWD3oWoXvVax13YP-1mRJ43irJCDEJh2MPHr9R7MbOLLSbfwhrA_tdVnpW2itVHXnBtQP3ifISw |
link.rule.ids | 315,782,786,798,27933,27934,54767 |
linkProvider | IEEE |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwFH6CMhQGbkQ5PTAhGeLEbuKxglRtgS7t0M2yYweQIEGBDv332E6KKiEGtiixHcvP7_DxfQ_giilj3Z5VQJVIimmuMixJkGGWMRVJO2Wk9lsXk3g8S-5TR5ODf7Awxhh_-czcuEd_lq_LbO62ym6JB5WEdB02GI27cQ3X-jk04LEn9rQ6HGAaxbPmEJME_HY0Scd2MRjSm4hS7pHTK27I51X5ZYy9h-nv_LNvu7DdhJKoV8t-D9ZMsQ9bKwSD-9Bucpy_LA6gGpWvxRfqFc9vBslCo2lZ2X6g1Cp5jV9E_v4A8pjcvKrvWC9Q6hPlOFmioY2xtZsm6GnRtOtbmsyrXNq3ddHyffnxEKb9dHo3wE3GBZxxQjGnOuwyYg1kzjVzVFgm0In1WCykiSMqU9KwLLJWVEdccpYRKW0FFeeOooZ2oyNoFWVhjgGFXRMqlifSRijUSKU0y4M4pIoH3GFZO3C9HH_xUfNqCL8eCbhwwhJOWKIRVgcO3YCvFKzHugNnS5GJRvU-RUSISzuYBPTkj2qX0B5Mnx7F43D8cAqb7k_OGxF2Bq2vam7OYf1Tzy_85PoGk4XLnA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+Angle+and+Torque+Estimation+Using+Multifrequency+Electrical+Impedance+Myography+and+Surface+Electromyography&rft.jtitle=IEEE+sensors+journal&rft.au=Schouten%2C+Martijn&rft.au=Baars%2C+Ewout+C.&rft.au=Yavuz%2C+Utku+S.&rft.au=Krijnen%2C+Gijs&rft.date=2024-10-15&rft.pub=IEEE&rft.issn=1530-437X&rft.volume=24&rft.issue=20&rft.spage=32651&rft.epage=32659&rft_id=info:doi/10.1109%2FJSEN.2024.3449286&rft.externalDocID=10670024 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |