Joint Angle and Torque Estimation Using Multifrequency Electrical Impedance Myography and Surface Electromyography

This article explores the feasibility of combining surface electromyography (sEMG) and multifrequency electrical impedance myography (mfEIM) for predicting joint angles and torques. We utilize a current-limited multifrequency electrical impedance spectrometer to simultaneously perform mfEIM on the b...

Full description

Saved in:
Bibliographic Details
Published in:IEEE sensors journal Vol. 24; no. 20; pp. 32651 - 32659
Main Authors: Schouten, Martijn, Baars, Ewout C., Yavuz, Utku S., Krijnen, Gijs
Format: Journal Article
Language:English
Published: New York IEEE 15-10-2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This article explores the feasibility of combining surface electromyography (sEMG) and multifrequency electrical impedance myography (mfEIM) for predicting joint angles and torques. We utilize a current-limited multifrequency electrical impedance spectrometer to simultaneously perform mfEIM on the biceps brachii and triceps brachii at 14 frequencies. The same system also measures the sEMG signals using the same electrodes. Measurements are conducted while subjects perform tasks in a 1-degree-of-freedom (DOF) exoskeleton, which enables the measurement of elbow joint torque and angle. We train time-delay neural networks (TDNNs) to model the relationships between mfEIM, sEMG, joint torque, and joint angle. The results demonstrate that the sEMG signal can predict joint torque and that mfEIM can predict joint angle. Additionally, we find indications that a combination of sEMG and mfEIM enhances joint torque predictions compared to using sEMG alone. We also determine the delays between the sEMG, mfEIM signals, and the joint angle and torque, finding that the joint torque signal has a delay relative to the sEMG signal of 155 ms during an isometric exercise and 125 ms during dynamic tasks. These results suggest that combining sEMG and mfEIM measurements could provide additional insights during biomedical experiments.
AbstractList This article explores the feasibility of combining surface electromyography (sEMG) and multifrequency electrical impedance myography (mfEIM) for predicting joint angles and torques. We utilize a current-limited multifrequency electrical impedance spectrometer to simultaneously perform mfEIM on the biceps brachii and triceps brachii at 14 frequencies. The same system also measures the sEMG signals using the same electrodes. Measurements are conducted while subjects perform tasks in a 1-degree-of-freedom (DOF) exoskeleton, which enables the measurement of elbow joint torque and angle. We train time-delay neural networks (TDNNs) to model the relationships between mfEIM, sEMG, joint torque, and joint angle. The results demonstrate that the sEMG signal can predict joint torque and that mfEIM can predict joint angle. Additionally, we find indications that a combination of sEMG and mfEIM enhances joint torque predictions compared to using sEMG alone. We also determine the delays between the sEMG, mfEIM signals, and the joint angle and torque, finding that the joint torque signal has a delay relative to the sEMG signal of 155 ms during an isometric exercise and 125 ms during dynamic tasks. These results suggest that combining sEMG and mfEIM measurements could provide additional insights during biomedical experiments.
Author Schouten, Martijn
Baars, Ewout C.
Krijnen, Gijs
Yavuz, Utku S.
Author_xml – sequence: 1
  givenname: Martijn
  orcidid: 0000-0001-9774-1195
  surname: Schouten
  fullname: Schouten, Martijn
  email: m.schouten@utwente.nl
  organization: Robotics and Mechatronics Research Group, University of Twente, Enschede, The Netherlands
– sequence: 2
  givenname: Ewout C.
  surname: Baars
  fullname: Baars, Ewout C.
  email: e.baars@alumnus.utwente.nl
  organization: Robotics and Mechatronics Research Group, University of Twente, Enschede, The Netherlands
– sequence: 3
  givenname: Utku S.
  orcidid: 0000-0002-6968-8064
  surname: Yavuz
  fullname: Yavuz, Utku S.
  email: s.u.yavuz@utwente.nl
  organization: Biomedical Signals and Systems Research Group, University of Twente, Enschede, The Netherlands
– sequence: 4
  givenname: Gijs
  orcidid: 0000-0001-9537-7123
  surname: Krijnen
  fullname: Krijnen, Gijs
  email: gijs.krijnen@utwente.nl
  organization: Robotics and Mechatronics Research Group, University of Twente, Enschede, The Netherlands
BookMark eNpNkD1PwzAQhi1UJNrCD0BisMSc4ovtxB6rqkCrFoYWiS1yE6ekSu3gJEP-PQ4pEtOd7p73Pt4JGhlrNEL3QGYARD6td8u3WUhCNqOMyVBEV2gMnIsAYiZGfU5JwGj8eYMmdX0iBGTM4zFya1uYBs_NsdRYmQzvrftuNV7WTXFWTWEN_qgLc8TbtmyK3GnfNGmHl6VOG1ekqsSrc6UzZVKNt509OlV9db-Tdq3Lla8OqD3_NW_Rda7KWt9d4hTtn5f7xWuweX9ZLeabIJXAAsmyMOIg4iiXGQdGpCaZYKHkIRORgPCgNE8pISSjUkmeglJecIhzkFyyiE7R4zC2ctYfXTfJybbO-I0JBYiBckGYp2CgUmfr2uk8qZx_3HUJkKR3NumdTXpnk4uzXvMwaAqt9T8-ionH6A9Kbnbn
CODEN ISJEAZ
Cites_doi 10.1109/TBME.1980.326652
10.3389/fnbot.2021.734525
10.26603/ijspt20170718
10.4085/1062-6050-45.2.181
10.1016/0021-9290(95)00178-6
10.1016/j.jbiomech.2022.111383
10.1109/TASE.2020.3033664
10.1109/BioRob49111.2020.9224325
10.1016/j.jelekin.2014.12.006
10.3389/frobt.2022.869476
10.3389/fphys.2018.00445
10.1016/j.procs.2017.01.209
10.3390/s20174770
10.1016/j.jbiomech.2021.110637
10.1088/1742-6596/2327/1/012075
10.1109/10.844217
10.1002/mus.10375
10.3389/fnbot.2021.659311
10.1109/IJCNN48605.2020.9206772
10.1016/j.clinph.2009.10.039
10.1109/TSMC.2016.2521823
10.1109/EMBC.2019.8856792
10.3990/1.9789036556200
10.1109/BIOROB.2014.6913870
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2024.3449286
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library Online
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 32659
ExternalDocumentID 10_1109_JSEN_2024_3449286
10670024
Genre orig-research
GrantInformation_xml – fundername: Dutch Research Council (NWO) and Twente Medical Systems International through the Research Program Wearable Robotics
  grantid: P16-05
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AASAJ
ABQJQ
ACGFO
ACGFS
ACIWK
AENEX
AJQPL
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RIG
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c914-94d2651876f9d51409e0d842952486812bae5c3000d39a95c1aa265b7f1959463
IEDL.DBID RIE
ISSN 1530-437X
IngestDate Thu Oct 17 04:22:47 EDT 2024
Wed Oct 23 14:25:28 EDT 2024
Wed Oct 23 05:52:15 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c914-94d2651876f9d51409e0d842952486812bae5c3000d39a95c1aa265b7f1959463
ORCID 0000-0001-9537-7123
0000-0001-9774-1195
0000-0002-6968-8064
PQID 3117135804
PQPubID 75733
PageCount 9
ParticipantIDs crossref_primary_10_1109_JSEN_2024_3449286
ieee_primary_10670024
proquest_journals_3117135804
PublicationCentury 2000
PublicationDate 2024-Oct.15,-15
PublicationDateYYYYMMDD 2024-10-15
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-Oct.15,-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref37
ref14
(ref33) 2023
ref11
Loshchilov (ref31)
Schouten (ref34) 2021
ref10
ref32
ref2
ref1
ref17
ref16
Chng (ref27) 2022
Schouten (ref18) 2022
ref24
ref25
Schouten (ref23) 2024
ref22
Schouten (ref20) 2024
ref28
(ref19) 2024
ref29
ref8
De Winter (ref36) 2013; 18
ref7
(ref30) 2023
Mathai (ref35) 2018
ref9
ref4
ref3
(ref21) 2024
ref6
ref5
Press (ref26) 1991; 56
References_xml – ident: ref32
  doi: 10.1109/TBME.1980.326652
– ident: ref10
  doi: 10.3389/fnbot.2021.734525
– ident: ref4
  doi: 10.26603/ijspt20170718
– volume-title: Using Normalization Layers to Improve Deep Learning Models
  year: 2022
  ident: ref27
  contributor:
    fullname: Chng
– volume-title: 1DOFsetup
  year: 2022
  ident: ref18
  contributor:
    fullname: Schouten
– ident: ref3
  doi: 10.4085/1062-6050-45.2.181
– ident: ref24
  doi: 10.1016/0021-9290(95)00178-6
– ident: ref14
  doi: 10.1016/j.jbiomech.2022.111383
– ident: ref15
  doi: 10.1109/TASE.2020.3033664
– ident: ref1
  doi: 10.1109/BioRob49111.2020.9224325
– volume-title: 1DOFsetup
  year: 2024
  ident: ref19
– volume-title: TiePieLCR Hardware
  year: 2024
  ident: ref21
– ident: ref17
  doi: 10.1016/j.jelekin.2014.12.006
– ident: ref13
  doi: 10.3389/frobt.2022.869476
– volume: 18
  start-page: 10
  issue: 1
  year: 2013
  ident: ref36
  article-title: Using the students t-test with extremely small sample sizes
  publication-title: Practical Assessment, Res., Eval.
  contributor:
    fullname: De Winter
– ident: ref5
  doi: 10.3389/fphys.2018.00445
– ident: ref12
  doi: 10.1016/j.procs.2017.01.209
– volume-title: TiePieLCR Hardware
  year: 2024
  ident: ref20
  contributor:
    fullname: Schouten
– ident: ref6
  doi: 10.3390/s20174770
– ident: ref2
  doi: 10.1016/j.jbiomech.2021.110637
– ident: ref28
  doi: 10.1088/1742-6596/2327/1/012075
– ident: ref25
  doi: 10.1109/10.844217
– year: 2021
  ident: ref34
  article-title: Inductive 3D printer XY calibration GUI
  contributor:
    fullname: Schouten
– volume: 56
  issue: 193
  volume-title: Numerical Recipes in Pascal—The Art of Scientific Computing
  year: 1991
  ident: ref26
  contributor:
    fullname: Press
– ident: ref16
  doi: 10.1002/mus.10375
– ident: ref11
  doi: 10.3389/fnbot.2021.659311
– ident: ref29
  doi: 10.1109/IJCNN48605.2020.9206772
– start-page: 1
  volume-title: Proc. 7th Int. Conf. Learn. Represent. (ICLR)
  ident: ref31
  article-title: Decoupled weight decay regularization
  contributor:
    fullname: Loshchilov
– volume-title: R-Squared Formula, Regression, and Interpretations
  year: 2023
  ident: ref33
– volume-title: Probability Statistics: A Course for Physicists Engineers
  year: 2018
  ident: ref35
  contributor:
    fullname: Mathai
– ident: ref37
  doi: 10.1016/j.clinph.2009.10.039
– ident: ref7
  doi: 10.1109/TSMC.2016.2521823
– ident: ref9
  doi: 10.1109/EMBC.2019.8856792
– ident: ref22
  doi: 10.3990/1.9789036556200
– volume-title: TiePieLCR GUI
  year: 2024
  ident: ref23
  contributor:
    fullname: Schouten
– volume-title: View
  year: 2023
  ident: ref30
– ident: ref8
  doi: 10.1109/BIOROB.2014.6913870
SSID ssj0019757
Score 2.457911
Snippet This article explores the feasibility of combining surface electromyography (sEMG) and multifrequency electrical impedance myography (mfEIM) for predicting...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Publisher
StartPage 32651
SubjectTerms Biomedical measurement
Control
Degrees of freedom
Elbow (anatomy)
Electrical impedance
electrical impedance myography (EIM)
electrical impedance tomography (EIT)
Electromyography
electromyography (EMG)
exoskeleton
Exoskeletons
Impedance
multifrequency electrical impedance tomography (MFEIT)
Muscles
Neural networks
Performance prediction
Sensors
time delay neural network (TDNN)
Torque
Torque measurement
Title Joint Angle and Torque Estimation Using Multifrequency Electrical Impedance Myography and Surface Electromyography
URI https://ieeexplore.ieee.org/document/10670024
https://www.proquest.com/docview/3117135804
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7RLsDAoxRRKMgDE5LbOLGbeKwgFVSiSzt0i-zYASRIUNoM_ffYTlpVQgxskWOfrDufz6_vO4B7JrUJe8YBZSQopplMsSBeilnKZCDMkBHKHV3Mw9kyeootTQ7eYWG01u7xmR7YT3eXr4q0skdlQ-JAJT5tQSvkUQ3W2l0Z8NDRehoP9jANwmVzhUk8PpzO45nZCvp0EFDKHW56Lwi5rCq_pmIXXyan_-zZGZw0C0k0ri1_Dgc678DxHr1gBw6bDOfvmwsop8VHvkbj_O1TI5ErtChK0w8UGxev0YvIvR5ADpGblfUL6w2KXZoca0n0YlbYyg4S9Lpp5DpJ86rMhCmtqxZf259dWEzixeMzbvIt4JQTijlV_ogRMz1mXDFLhKU9FZl4xXwaWZoyKTRLAzOHqoALzlIihGkgw8wS1NBRcAntvMj1FSB_pH3JskiY9QnVQkrFMi_0qeQet0jWHjxs9Z9816waiduNeDyxxkqssZLGWD3oWoXvVax13YP-1mRJ43irJCDEJh2MPHr9R7MbOLLSbfwhrA_tdVnpW2itVHXnBtQP3ifISw
link.rule.ids 315,782,786,798,27933,27934,54767
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwFH6CMhQGbkQ5PTAhGeLEbuKxglRtgS7t0M2yYweQIEGBDv332E6KKiEGtiixHcvP7_DxfQ_giilj3Z5VQJVIimmuMixJkGGWMRVJO2Wk9lsXk3g8S-5TR5ODf7Awxhh_-czcuEd_lq_LbO62ym6JB5WEdB02GI27cQ3X-jk04LEn9rQ6HGAaxbPmEJME_HY0Scd2MRjSm4hS7pHTK27I51X5ZYy9h-nv_LNvu7DdhJKoV8t-D9ZMsQ9bKwSD-9Bucpy_LA6gGpWvxRfqFc9vBslCo2lZ2X6g1Cp5jV9E_v4A8pjcvKrvWC9Q6hPlOFmioY2xtZsm6GnRtOtbmsyrXNq3ddHyffnxEKb9dHo3wE3GBZxxQjGnOuwyYg1kzjVzVFgm0In1WCykiSMqU9KwLLJWVEdccpYRKW0FFeeOooZ2oyNoFWVhjgGFXRMqlifSRijUSKU0y4M4pIoH3GFZO3C9HH_xUfNqCL8eCbhwwhJOWKIRVgcO3YCvFKzHugNnS5GJRvU-RUSISzuYBPTkj2qX0B5Mnx7F43D8cAqb7k_OGxF2Bq2vam7OYf1Tzy_85PoGk4XLnA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+Angle+and+Torque+Estimation+Using+Multifrequency+Electrical+Impedance+Myography+and+Surface+Electromyography&rft.jtitle=IEEE+sensors+journal&rft.au=Schouten%2C+Martijn&rft.au=Baars%2C+Ewout+C.&rft.au=Yavuz%2C+Utku+S.&rft.au=Krijnen%2C+Gijs&rft.date=2024-10-15&rft.pub=IEEE&rft.issn=1530-437X&rft.volume=24&rft.issue=20&rft.spage=32651&rft.epage=32659&rft_id=info:doi/10.1109%2FJSEN.2024.3449286&rft.externalDocID=10670024
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon