On the Choice of Equivalent Electrical Circuits for the Aluminum Alloys Oxide Coatings Studies by Electrochemical Impedance Spectroscopy
This paper reviews research on the application of equivalent electrical circuits (EEC) for extracting electrochemical parameters of the aluminum alloys oxide coatings. Based on the published research and experimental data gathered by authors we conclude that the most common EEC, applicable to nonsea...
Saved in:
Published in: | Steel in translation Vol. 54; no. 5; pp. 446 - 456 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Moscow
Pleiades Publishing
01-05-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | This paper reviews research on the application of equivalent electrical circuits (EEC) for extracting electrochemical parameters of the aluminum alloys oxide coatings. Based on the published research and experimental data gathered by authors we conclude that the most common EEC, applicable to nonsealed coatings and coatings with different sealing, is dual-circuit, consisting of two parallel connected resistors and constant phase elements (CPE). When corrosion damage is introduced the circuit can still be applied except for sufficient degradation of the surface, in which the total impedance is dominated by the double capacitance layer and the impedance can be modeled by the Randles circuit. |
---|---|
AbstractList | This paper reviews research on the application of equivalent electrical circuits (EEC) for extracting electrochemical parameters of the aluminum alloys oxide coatings. Based on the published research and experimental data gathered by authors we conclude that the most common EEC, applicable to nonsealed coatings and coatings with different sealing, is dual-circuit, consisting of two parallel connected resistors and constant phase elements (CPE). When corrosion damage is introduced the circuit can still be applied except for sufficient degradation of the surface, in which the total impedance is dominated by the double capacitance layer and the impedance can be modeled by the Randles circuit. |
Author | Kutyrev, A. E. Medvedev, I. M. Krasnyk, E. V. |
Author_xml | – sequence: 1 givenname: I. M. surname: Medvedev fullname: Medvedev, I. M. email: medvedevim@viam.ru organization: All-Russian Scientific-Research Institute of Aviation Materials of the National Research Center “Kurchatov Institute” – sequence: 2 givenname: A. E. surname: Kutyrev fullname: Kutyrev, A. E. organization: All-Russian Scientific-Research Institute of Aviation Materials of the National Research Center “Kurchatov Institute” – sequence: 3 givenname: E. V. surname: Krasnyk fullname: Krasnyk, E. V. organization: All-Russian Scientific-Research Institute of Aviation Materials of the National Research Center “Kurchatov Institute” |
BookMark | eNp9kE1OwzAQhS1UJNrCAdj5AgE7jp14WUUFKlXqot1Hru20rhI72AkiN-DYuD87JFYz0nvfm9GbgYl1VgPwjNELwYi8bhFnOeI4TbMcIY7YHZhiTmiCeFFMwPQsJ2f9AcxCOCFEWUrxFPxsLOyPGpZHZ6SGrobLz8F8iUbbHi4bLXtvpGhgabwcTB9g7fwFWDRDa-zQxqVxY4Cbb6NijBO9sYcAt_2gjA5wP95SnDzq9hK1ajuthI3Xtt1FCdJ14yO4r0UT9NNtzsHubbkrP5L15n1VLtaJLChLqOCioJpSXqQkyxmmqsCyloopRvZYsKzmPBNE5ZipukB5us9ItGda5ByTlMwBvsbKeDd4XVedN63wY4VRdW6y-tNkZNIrE6LXHrSvTm7wNn75D_QLtVJ4uQ |
Cites_doi | 10.1016/j.corsci.2010.03.004 10.1016/j.electacta.2011.05.092 10.1016/j.corsci.2008.09.008 10.1149/1.2969277 10.18577/2307-6046-2019-0-6-51-64 10.1016/0010-938x(84)90115-x 10.31044/1813-7016-2021-0-3-42-48 10.1149/1.2163811 10.1016/s0010-938x(97)00019-x 10.1016/S0010-938X(01)00082-8 10.1002/sca.21081 10.1016/j.surfcoat.2013.07.018 10.1016/j.electacta.2016.06.131 10.18577/2071-9140-2015-0-2-76-87 10.1016/j.surfcoat.2018.12.092 10.1016/0013-4686(88)85021-7 10.1016/j.electacta.2013.02.010 10.18577/2307-6046-2016-0-5-10-10 10.1016/j.corsci.2015.03.021 10.1002/sia.6633 10.1016/s0257-8972(01)01681-4 10.18577/2071-9140-2014-0-4-9-17 10.1134/s2070205117040165 10.1016/j.surfcoat.2007.10.019 10.1016/j.surfcoat.2015.12.024 10.1016/j.electacta.2009.03.083 10.1016/0010-938x(89)90036-x 10.1016/j.corsci.2009.06.031 10.1149/2.0231610jes 10.18577/2307-6046-2019-0-8-67-78 10.1016/j.surfcoat.2005.10.031 10.1134/S1023193522060076 10.1149/1.1393301 10.1016/j.apsusc.2008.08.106 10.1149/1.2108756 10.1016/j.apsusc.2013.07.047 10.17580/tsm.2016.08.13 10.5402/2012/323676 10.1016/s0010-938x(02)00137-3 10.18577/2071-9140-2017-0-S-186-194 10.1023/A:1003569330080 10.1149/1.2095786 |
ContentType | Journal Article |
Copyright | Allerton Press, Inc. 2024. ISSN 0967-0912, Steel in Translation, 2024, Vol. 54, No. 5, pp. 446–456. © Allerton Press, Inc., 2024. Russian Text © The Author(s), 2024, published in Korroziya: Zashchita, Materialy, 2024, No. 14, pp. 18–32. |
Copyright_xml | – notice: Allerton Press, Inc. 2024. ISSN 0967-0912, Steel in Translation, 2024, Vol. 54, No. 5, pp. 446–456. © Allerton Press, Inc., 2024. Russian Text © The Author(s), 2024, published in Korroziya: Zashchita, Materialy, 2024, No. 14, pp. 18–32. |
DBID | AAYXX CITATION |
DOI | 10.3103/S0967091224700906 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1935-0988 |
EndPage | 456 |
ExternalDocumentID | 10_3103_S0967091224700906 |
GroupedDBID | -58 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 123 1N0 29Q 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 408 40D 40E 5VS 6NX 8FE 8FG 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO ABAKF ABDZT ABECU ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACCUX ACDTI ACGFS ACHSB ACHXU ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADRFC ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD B-. BA0 BDATZ BENPR BGLVJ BGNMA CAG CCPQU COF CS3 D1I DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HCIFZ HF~ HG6 HLICF HMJXF HRMNR HZ~ IJ- IKXTQ IWAJR I~X I~Z J-C JBSCW JZLTJ KB. KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J P9N PDBOC PF0 PT4 Q2X QOR QOS R89 R9I ROL RPX RSV S16 S1Z S27 S3B SAP SCM SDH SHX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 XU3 YLTOR Z7R Z7S Z7Y Z7Z Z85 ZMTXR ~A9 AAYXX AAYZH CITATION |
ID | FETCH-LOGICAL-c856-5a9a85e55982347615d81cfcd6d63b1a64f994a3d716df8072b43e554ea791323 |
IEDL.DBID | AEJHL |
ISSN | 0967-0912 |
IngestDate | Fri Nov 22 01:50:46 EST 2024 Fri Sep 27 04:31:35 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | electrochemical impedance spectroscopy electrochemistry anodic oxide coatings aluminum alloys |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c856-5a9a85e55982347615d81cfcd6d63b1a64f994a3d716df8072b43e554ea791323 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_3103_S0967091224700906 springer_journals_10_3103_S0967091224700906 |
PublicationCentury | 2000 |
PublicationDate | 2024-05-00 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-00 |
PublicationDecade | 2020 |
PublicationPlace | Moscow |
PublicationPlace_xml | – name: Moscow |
PublicationTitle | Steel in translation |
PublicationTitleAbbrev | Steel Transl |
PublicationYear | 2024 |
Publisher | Pleiades Publishing |
Publisher_xml | – name: Pleiades Publishing |
References | Kablov, E.N., New generation materials, Zashch. Bezop., 2014, no. 4, pp. 28–29. ZhaoX.-H.ZuoYu.ZhaoJ.-M.XiongJ.-P.TangY.-M.A study on the self-sealing process of anodic films on aluminum by EISSurf. Coat. Technol.2006200684668531:CAS:528:DC%2BD28Xls1Gnt7s%3D10.1016/j.surfcoat.2005.10.031 FrancoM.AnoopS.Uma RaniR.SharmaA.K.Porous layer characterization of anodized and black-anodized aluminium by electrochemical studiesISRN Corros.201220123236761:CAS:528:DC%2BC3sXhtVamsr7O10.5402/2012/323676 MutluR.N.MertB.D.AteşS.GündüzS.YazıcıB.Enhanced corrosion resistance and surface characterization of anodized 7075 AlProt. Met. Phys. Chem. Surf.2017537337421:CAS:528:DC%2BC2sXht1aktrjL10.1134/s2070205117040165 CarangeloA.CurioniM.AcquestaA.MonettaT.BellucciF.Application of EIS to in situ characterization of hydrothermal sealing of anodized aluminum alloys: Comparison between hexavalent chromium-based sealing, hot water sealing and cerium-based sealingJ. Electrochem. Soc.2016163c619c6261:CAS:528:DC%2BC28XhsV2ks7bL10.1149/2.0231610jes RisovićD.PavlovićŽ.Performance assessment of methods for estimation of fractal dimension from scanning electron microscope imagesScanning2013354024111:CAS:528:DC%2BC3sXhvFGisrbK10.1002/sca.2108123483485 Kablov, E.N., Antipov, V.V., and Klochkova, Yu.Yu., New generation aluminum–lithium alloys and laminated alumina–glass plastics on their basis, Tsvetnye Met., 2016, no. 8, pp. 86–91. https://doi.org/10.17580/tsm.2016.08.13 MulderW.H.SluytersJ.H.An explanation of depressed semi-circular arcs in impedance plots for irreversible electrode reactionsElectrochim. Acta1988333033101:CAS:528:DyaL1cXhvFClsrs%3D10.1016/0013-4686(88)85021-7 KumarC.S.RaoV.Sh.RajaV.S.SharmaA.K.MayannaS.M.Corrosion behaviour of solar reflector coatings on AA 2024T3—An electrochemical impedance spectroscopy studyCorros. Sci20024438739310.1016/S0010-938X(01)00082-8 HitzigJ.JüttnerK.LorenzW.J.PaatschW.AC-impedance measurements on corroded porous aluminum oxide filmsJ. Electrochem. Soc.19861338878921:CAS:528:DyaL28XitlarsLY%3D10.1149/1.2108756 HitzigJ.JüttnerK.LorenzW.J.PaatschW.AC-impedance measurements on porous aluminium oxide filmsCorros. Sci.1984249459521:CAS:528:DyaL2MXltlSjtg%3D%3D10.1016/0010-938x(84)90115-x LópezV.GonzálezJ.A.OteroE.EscuderoE.MorcilloM.Atmospheric corrosion of bare and anodised aluminium in a wide range of environmental conditions. Part II: Electrochemical responsesSurf. Coat. Technol.200215323524410.1016/s0257-8972(01)01681-4 Karimova, S.A., Kutyrev, A.E., Pavlovskaya, T.G., and Zakharov, K.E., Low temperature sealing of anodic oxide coatings on parts of aluminum alloys, Aviats. Mater. Tekhnol., 2014, no. 4, pp. 9–17. https://doi.org/10.18577/2071-9140-2014-0-4-9-17 BartoloméMaJ., del Río, J.F., Escudero, E., Feliu, S., López, V., Otero, E., and González, J.A., Behaviour of different bare and anodised aluminium alloys in the atmosphereSurf. Coat. Technol.2008202278327931:CAS:528:DC%2BD1cXit1SrtLY%3D10.1016/j.surfcoat.2007.10.019 HuangYu.ShihH.DaughertyJ.MansfeldF.Evaluation of the properties of anodized aluminum 6061 subjected to thermal cycling treatment using electrochemical impedance spectroscopy (EIS)Corros. Sci.200951249325011:CAS:528:DC%2BD1MXhtV2nt7fI10.1016/j.corsci.2009.06.031 Kablov, E.N., Startsev, O.V., and Medvedev, I.M., Review of international experience on corrosion and corrosion protection, Aviats. Mater. Tekhnol., 2015, no. 2, pp. 76–87. https://doi.org/10.18577/2071-9140-2015-0-2-76-87 Antipov, V.V., Medvedev, I.M., Kutyrev, A.E., and Volkov, I.A., Development of method for rapid evaluation of protective properties of anodic oxide coatings during neutral salt spray chamber testing, Korroz.: Mater., Zashch., 2021, no. 3, pp. 42–48. https://doi.org/10.31044/1813-7016-2021-0-3-42-48 SuayJ.J.GiménezE.RodríguezT.HabbibK.SauraJ.J.Characterization of anodized and sealed aluminium by EISCorros. Sci.2003456116241:CAS:528:DC%2BD38XnvFSrurY%3D10.1016/s0010-938x(02)00137-3 García-RubioM.de LaraM.P.OcónP.DiekhoffS.BenekeM.LavíaA.GarcíaI.Effect of postreatment on the corrosion behaviour of tartaric–sulphuric anodic filmsElectrochim. Acta200954478948001:CAS:528:DC%2BD1MXmt1Gntrs%3D10.1016/j.electacta.2009.03.083 Antipov, V.V., Medvedev, I.M., Kutyrev, A.E., and Volkov, I.A., Rapid assessment of hot water sealed anodic oxide coatings protective properties during NaCl immersion testing, Tr. VIAM, 2019, no. 8, pp. 67–78. https://doi.org/10.18577/2307-6046-2019-0-8-67-78 García-RubioM.OcónP.CurioniM.ThompsonG.E.SkeldonP.LavíaA.GarcíaI.Degradation of the corrosion resistance of anodic oxide films through immersion in the anodising electrolyteCorros. Sci.201052221922271:CAS:528:DC%2BC3cXmtVGisrY%3D10.1016/j.corsci.2010.03.004 GonzalezJ.A.LopezV.OteroE.BautistaA.LizarbeR.BarbaC.BaldonedoJ.L.Overaging of sealed and unsealed aluminium oxide filmsCorros. Sci.199739110911181:CAS:528:DyaK2sXktVCku7o%3D10.1016/s0010-938x(97)00019-x Antipov, V.V., Prospects for development of aluminium, magnesium and titanium alloys for aerospace engineering, Aviats. Mater. Tekhnol., 2017, no. s, pp. 186–194. https://doi.org/10.18577/2071-9140-2017-0-S-186-194 HuangYu.ShihH.HuangH.DaughertyJ.WuSh.RamanathanS.ChangCh.MansfeldF.Evaluation of the corrosion resistance of anodized aluminum 6061 using electrochemical impedance spectroscopy (EIS)Corros. Sci.200850356935751:CAS:528:DC%2BD1cXhsVCnurzI10.1016/j.corsci.2008.09.008 Veys-RenauxD.ChahbounN.RoccaE.Anodizing of multiphase aluminium alloys in sulfuric acid: In-situ electrochemical behaviour and oxide propertiesElectrochim. Acta2016211105610651:CAS:528:DC%2BC28XhtFCru77K10.1016/j.electacta.2016.06.131 WangSh.PengH.ShaoZh.ZhaoQ.DuN.Sealing of anodized aluminum with phytic acid solutionSurf. Coat. Technol.20162861551641:CAS:528:DC%2BC28Xps1Gkug%3D%3D10.1016/j.surfcoat.2015.12.024 BoisierG.PébèreN.DruezC.VillatteM.SuelS.FESEM and EIS study of sealed AA2024 T3 anodized in sulfuric acid electrolytes: Influence of tartaric acidJ. Electrochem. Soc.2008155c5211:CAS:528:DC%2BD1cXhtFOru7fN10.1149/1.2969277 HuN.DongX.HeX.BrowningJ.F.SchaeferD.W.Effect of sealing on the morphology of anodized aluminum oxideCorros. Sci.20159717241:CAS:528:DC%2BC2MXmtlOjsbk%3D10.1016/j.corsci.2015.03.021 LeeJ.JungU.KimW.ChungW.Effects of residual water in the pores of aluminum anodic oxide layers prior to sealing on corrosion resistanceAppl. Surf. Sci.20132839419461:CAS:528:DC%2BC3sXht1Whtb7N10.1016/j.apsusc.2013.07.047 WhelanM.CassidyJ.DuffyB.Sol–gel sealing characteristics for corrosion resistance of anodised aluminiumSurf. Coat. Technol.201323586961:CAS:528:DC%2BC3sXhtF2ms7bI10.1016/j.surfcoat.2013.07.018 MansfeldF.KendigM.W.Evaluation of anodized aluminum surfaces with electrochemical impedance spectroscopyJ. Electrochem. Soc.19881358288331:CAS:528:DyaL1cXitFantLk%3D10.1149/1.2095786 GonzálezJ.A.FeliuS.BautistaA.OteroE.Changes in cold sealed aluminium oxide films during ageingJ. Appl. Electrochem.19992984385210.1023/A:1003569330080 LópezV.BartoloméM.J.EscuderoE.OteroE.GonzálezJ.A.Comparison by SEM, TEM, and EIS of hydrothermally sealed and cold sealed aluminum anodic oxidesJ. Electrochem. Soc.2006153b751:CAS:528:DC%2BD28XhtlOjsbY%3D10.1149/1.2163811 Antipov, V.V., Medvedev, I.M., Kutyrev, A.E., and Zhitnyuk, S.V., The investigation of electrochemical properties of nonsealed oxide coatings on 1163, V‑1461, V96C3pch aluminum alloys during accelerated testing, Tr. VIAM, 2019, no. 6, pp. 51–64. https://doi.org/10.18577/2307-6046-2019-0-6-51-64 WangR.WangL.HeCh.LuM.SunL.Studies on the sealing processes of corrosion resistant coatings formed on 2024 aluminium alloy with tartaric-sulfuric anodizingSurf. Coat. Technol.20193603693751:CAS:528:DC%2BC1MXhsVamtLg%3D10.1016/j.surfcoat.2018.12.092 GonzálezJ.A.LópezV.OteroE.BautistaA.Postsealing changes in porous aluminum oxide films obtained in sulfuric acid solutionsJ. Electrochem. Soc.200014798410.1149/1.1393301 Chesnokov, D.V., Antipov, V.V., and Kulyushina, N.V., The method of accelerated laboratory tests of aluminum alloys for determination of their corrosion resistance in conditions of the sea atmosphere, Tr. VIAM, 2016, no. 6, pp. 90–97. https://doi.org/10.18577/2307-6046-2016-0-5-10-10 KumarR.KantR.Theory of quasi-reversible charge transfer admittance on finite self-affine fractal electrodeElectrochim. Acta201156711271231:CAS:528:DC%2BC3MXpvVOmt78%3D10.1016/j.electacta.2011.05.092 RisovićD.PoljačekS.M.FurićK.GojoM.Inferring fractal dimension of rough/porous surfaces—A comparison of SEM image analysis and electrochemical impedance spectroscopy methodsAppl. Surf. Sci.2008255306330701:CAS:528:DC%2BD1cXhsVChsrvI10.1016/j.apsusc.2008.08.106 JüttnerK.LorenzW.J.PaatschW.The role of surface inhomogeneities in corrosion processes-electrochemical impedance spectroscopy (EIS) on different aluminium oxide filmsCorros. Sci.19892927928810.1016/0010-938x(89)90036-x MedvedevI.M.KutyrevA.E.VolkovI.A.The study of the corrosion damage influence on the impedance of anodic oxide coatingsRuss. J. Electrochem.2022584714811:CAS:528:DC%2BB38XhslWis7nK10.1134/S1023193522060076 KantR.SarathbabuM.SrivastavSh.Effect of uncompensated solution resistance on quasireversible charge transfer at rough and finite fractal electrodeElectrochim. Acta2013952372451:CAS:528:DC%2BC3sXksFyisLs%3D10.1016/j.electacta.2013.02.010 Prada RamirezO.M.QueirozF.M.TeradaM.DonatusU.CostaI.OlivierM.De MeloH.G.EIS investigation of a Ce-based posttreatment step on the corrosion behaviour of Alclad AA2024 anodized in TSASurf. Interface Anal.201951126012751:CAS:528:DC%2BC1MXkt1agsb4%3D10.1002/sia.6633 1921_CR4 J.A. González (1921_CR7) 1999; 29 1921_CR37 1921_CR3 I.M. Medvedev (1921_CR11) 2022; 58 J. Hitzig (1921_CR12) 1986; 133 1921_CR5 R. Kumar (1921_CR14) 2011; 56 1921_CR2 1921_CR1 1921_CR38 G. Boisier (1921_CR27) 2008; 155 Yu. Huang (1921_CR34) 2008; 50 C.S. Kumar (1921_CR42) 2002; 44 J. Lee (1921_CR36) 2013; 283 Sh. Wang (1921_CR18) 2016; 286 D. Veys-Renaux (1921_CR25) 2016; 211 R. Kant (1921_CR13) 2013; 95 W.H. Mulder (1921_CR17) 1988; 33 R.N. Mutlu (1921_CR24) 2017; 53 1921_CR8 A. Carangelo (1921_CR19) 2016; 163 D. Risović (1921_CR16) 2013; 35 O.M. Prada Ramirez (1921_CR20) 2019; 51 D. Risović (1921_CR15) 2008; 255 X.-H. Zhao (1921_CR10) 2006; 200 1921_CR29 M. Franco (1921_CR28) 2012; 2012 F. Mansfeld (1921_CR40) 1988; 135 Yu. Huang (1921_CR35) 2009; 51 R. Wang (1921_CR43) 2019; 360 M. García-Rubio (1921_CR33) 2010; 52 J. Hitzig (1921_CR39) 1984; 24 V. López (1921_CR21) 2002; 153 J.A. Gonzalez (1921_CR22) 1997; 39 M. García-Rubio (1921_CR9) 2009; 54 J.J. Suay (1921_CR41) 2003; 45 V. López (1921_CR31) 2006; 153 Ma Bartolomé (1921_CR6) 2008; 202 J.A. González (1921_CR23) 2000; 147 K. Jüttner (1921_CR32) 1989; 29 M. Whelan (1921_CR26) 2013; 235 N. Hu (1921_CR30) 2015; 97 |
References_xml | – volume: 52 start-page: 2219 year: 2010 ident: 1921_CR33 publication-title: Corros. Sci. doi: 10.1016/j.corsci.2010.03.004 contributor: fullname: M. García-Rubio – volume: 56 start-page: 7112 year: 2011 ident: 1921_CR14 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2011.05.092 contributor: fullname: R. Kumar – volume: 50 start-page: 3569 year: 2008 ident: 1921_CR34 publication-title: Corros. Sci. doi: 10.1016/j.corsci.2008.09.008 contributor: fullname: Yu. Huang – volume: 155 start-page: c521 year: 2008 ident: 1921_CR27 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2969277 contributor: fullname: G. Boisier – ident: 1921_CR8 doi: 10.18577/2307-6046-2019-0-6-51-64 – volume: 24 start-page: 945 year: 1984 ident: 1921_CR39 publication-title: Corros. Sci. doi: 10.1016/0010-938x(84)90115-x contributor: fullname: J. Hitzig – ident: 1921_CR38 doi: 10.31044/1813-7016-2021-0-3-42-48 – volume: 153 start-page: b75 year: 2006 ident: 1921_CR31 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2163811 contributor: fullname: V. López – volume: 39 start-page: 1109 year: 1997 ident: 1921_CR22 publication-title: Corros. Sci. doi: 10.1016/s0010-938x(97)00019-x contributor: fullname: J.A. Gonzalez – volume: 44 start-page: 387 year: 2002 ident: 1921_CR42 publication-title: Corros. Sci doi: 10.1016/S0010-938X(01)00082-8 contributor: fullname: C.S. Kumar – volume: 35 start-page: 402 year: 2013 ident: 1921_CR16 publication-title: Scanning doi: 10.1002/sca.21081 contributor: fullname: D. Risović – volume: 235 start-page: 86 year: 2013 ident: 1921_CR26 publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2013.07.018 contributor: fullname: M. Whelan – volume: 211 start-page: 1056 year: 2016 ident: 1921_CR25 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.06.131 contributor: fullname: D. Veys-Renaux – ident: 1921_CR4 doi: 10.18577/2071-9140-2015-0-2-76-87 – volume: 360 start-page: 369 year: 2019 ident: 1921_CR43 publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2018.12.092 contributor: fullname: R. Wang – ident: 1921_CR5 – volume: 33 start-page: 303 year: 1988 ident: 1921_CR17 publication-title: Electrochim. Acta doi: 10.1016/0013-4686(88)85021-7 contributor: fullname: W.H. Mulder – volume: 95 start-page: 237 year: 2013 ident: 1921_CR13 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2013.02.010 contributor: fullname: R. Kant – ident: 1921_CR3 doi: 10.18577/2307-6046-2016-0-5-10-10 – volume: 97 start-page: 17 year: 2015 ident: 1921_CR30 publication-title: Corros. Sci. doi: 10.1016/j.corsci.2015.03.021 contributor: fullname: N. Hu – volume: 51 start-page: 1260 year: 2019 ident: 1921_CR20 publication-title: Surf. Interface Anal. doi: 10.1002/sia.6633 contributor: fullname: O.M. Prada Ramirez – volume: 153 start-page: 235 year: 2002 ident: 1921_CR21 publication-title: Surf. Coat. Technol. doi: 10.1016/s0257-8972(01)01681-4 contributor: fullname: V. López – ident: 1921_CR29 doi: 10.18577/2071-9140-2014-0-4-9-17 – volume: 53 start-page: 733 year: 2017 ident: 1921_CR24 publication-title: Prot. Met. Phys. Chem. Surf. doi: 10.1134/s2070205117040165 contributor: fullname: R.N. Mutlu – volume: 202 start-page: 2783 year: 2008 ident: 1921_CR6 publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2007.10.019 contributor: fullname: Ma Bartolomé – volume: 286 start-page: 155 year: 2016 ident: 1921_CR18 publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2015.12.024 contributor: fullname: Sh. Wang – volume: 54 start-page: 4789 year: 2009 ident: 1921_CR9 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2009.03.083 contributor: fullname: M. García-Rubio – volume: 29 start-page: 279 year: 1989 ident: 1921_CR32 publication-title: Corros. Sci. doi: 10.1016/0010-938x(89)90036-x contributor: fullname: K. Jüttner – volume: 51 start-page: 2493 year: 2009 ident: 1921_CR35 publication-title: Corros. Sci. doi: 10.1016/j.corsci.2009.06.031 contributor: fullname: Yu. Huang – volume: 163 start-page: c619 year: 2016 ident: 1921_CR19 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0231610jes contributor: fullname: A. Carangelo – ident: 1921_CR37 doi: 10.18577/2307-6046-2019-0-8-67-78 – volume: 200 start-page: 6846 year: 2006 ident: 1921_CR10 publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2005.10.031 contributor: fullname: X.-H. Zhao – volume: 58 start-page: 471 year: 2022 ident: 1921_CR11 publication-title: Russ. J. Electrochem. doi: 10.1134/S1023193522060076 contributor: fullname: I.M. Medvedev – volume: 147 start-page: 984 year: 2000 ident: 1921_CR23 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1393301 contributor: fullname: J.A. González – volume: 255 start-page: 3063 year: 2008 ident: 1921_CR15 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2008.08.106 contributor: fullname: D. Risović – volume: 133 start-page: 887 year: 1986 ident: 1921_CR12 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2108756 contributor: fullname: J. Hitzig – volume: 283 start-page: 941 year: 2013 ident: 1921_CR36 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2013.07.047 contributor: fullname: J. Lee – ident: 1921_CR1 doi: 10.17580/tsm.2016.08.13 – volume: 2012 start-page: 323676 year: 2012 ident: 1921_CR28 publication-title: ISRN Corros. doi: 10.5402/2012/323676 contributor: fullname: M. Franco – volume: 45 start-page: 611 year: 2003 ident: 1921_CR41 publication-title: Corros. Sci. doi: 10.1016/s0010-938x(02)00137-3 contributor: fullname: J.J. Suay – ident: 1921_CR2 doi: 10.18577/2071-9140-2017-0-S-186-194 – volume: 29 start-page: 843 year: 1999 ident: 1921_CR7 publication-title: J. Appl. Electrochem. doi: 10.1023/A:1003569330080 contributor: fullname: J.A. González – volume: 135 start-page: 828 year: 1988 ident: 1921_CR40 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2095786 contributor: fullname: F. Mansfeld |
SSID | ssj0056251 |
Score | 2.3198922 |
Snippet | This paper reviews research on the application of equivalent electrical circuits (EEC) for extracting electrochemical parameters of the aluminum alloys oxide... |
SourceID | crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 446 |
SubjectTerms | Chemistry and Materials Science Materials Science |
Title | On the Choice of Equivalent Electrical Circuits for the Aluminum Alloys Oxide Coatings Studies by Electrochemical Impedance Spectroscopy |
URI | https://link.springer.com/article/10.3103/S0967091224700906 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagXWDgjSgveWACBdLYie2xKqkKQnRoB7bIiWMRAUlpGon-A3425zwQFTDAluFsRfb5vu_s03cInbnatalWxOoq8GBKId0JhaMtCJbaEbY2EG6uLsbs_oFf-0Ymx_m8ukifLpsXyTJQl2mlTa7GwLUZgBtADgNeYFS22wA9Lvh2u-ffDu-a-GsYfdknD-wtM6B6y_x5kmU0Wn4KLRFmsPmff9tCGzWfxL3KAbbRSpzuoPUvKoO76H2UYqB5uP-YQVTAmcb-a5GAhwHeYL9sg2N2CveTWVQk8xwDjy0H9CBwJWnxAh_P2SLHo7dEwTSZNKXSOa5LEHG4qGcxzbdK9QF8A2RcGX_Cpr_93ChmZtPFHpoM_El_aNUNGKyIu57lSiG5GxsJd4dQBtxH8W6kI-Upj4Rd6VEtBJVEQc6lNLeZE1IC5jSWTECWS_ZRK83S-ABhyZRyRMRVTKQpLBUh40LHSvFQA2WLOui82YdgWslsBJCemNUNvq1uB1002xDUJy7_3frwT9ZHaM0B2lKVNB6j1nxWxCdoNVfFae1nHwCXy0E |
link.rule.ids | 315,782,786,27933,27934,41073,42142,48344,48347,49649,49652,52153 |
linkProvider | Springer Nature |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagHYCBN6I8PTCBItrYeXis2lRUlHZoh3aKnDgWkSApTSPRf8DP5uwkEhUwwJbhfIp8l7vv4vN3CN1Y0mpSKYjREuDBlEK5EzBTGhAspcmaUqVw9eti7AynbtdTNDmkuguju92rI0kdqXVd2ST3YwDbDmQ3yDkOAANFs11XZOdmDdXb09msWwVgBen1oDyQN9SC4jDzZyXr6Wj9LFSnmN7ev15uH-2WiBK3Cxc4QBtRcoh2vvAMHqGPUYIB6OHOcwpxAacSe295DD4GGQd7ehCOshXuxIswj5cZBiSrF7QhdMVJ_goPL-kqw6P3WICalKtm6QyXTYg4WJVa1PgtzT-A-wDHhfIorCbcLxVnZjpfHaNJz5t0HoxyBIMRupZtWJxx14oUibtJqAPoR7itUIbCFjYJWtymkjHKiYCqS0i36ZgBJSBOI-4wqHPJCaolaRKdIswdIUwWuiIiXLWWssBxmYyEcAMJoC1soNvKEP68INrwoUBRu-t_290GuqvM4JffXPa79NmfpK_R1sPkaeAP-sPHc7RtAogpGhwvUG25yKNLtJmJ_Kp0uk-WJc9z |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA-6gejBb3F-5uBJKduatGlOMmarQ9mE7eCttE2DBW3nuoL7D_yzfUlbcKgH8VboS1qSl_d-L3n5PYQuLGl1qBTE6ArQYEoh3Am5KQ0wltLkHalcuNq6GLPhk3PjKpqc6_oujM52r48kyzsNiqUpnbenQrZ1jNkh7TEAbwaeDvwPA5CgKLebaleMNlCzN5jcerUxVvBeF80DeUM1KA82f-5k2TUtn4tqd-Nt_ftHt9FmhTRxr1SNHbQSp7to4wv_4B76GKUYACDuP2dgL3AmsftWJKB78AHs6gI5ag5xP5lFRTLPMSBc3aAHJi1Ji1d4eMkWOR69JwK6yQKVRJ3jKjkRh4uqF1WWS_MS4AHAdKE0DY-n-o26FrPYRxPPnfTvjKo0gxE5lm1YAQ8cK1bk7iahDFCRcLqRjIQtbBJ2A5tKzmlABERjQjodZoaUgDiNA8Yh_iUHqJFmaXyIcMCEMHnkiJgEKuWUh8zhMhbCCSWAuaiFLutJ8aclAYcPgYsaXf_b6LbQVT0lfrUW89-lj_4kfY7WHm88_2EwvD9G6yZgmzLv8QQ15rMiPkWruSjOKv37BNap2Ao |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Choice+of+Equivalent+Electrical+Circuits+for+the+Aluminum+Alloys+Oxide+Coatings+Studies+by+Electrochemical+Impedance+Spectroscopy&rft.jtitle=Steel+in+translation&rft.au=Medvedev%2C+I.+M.&rft.au=Kutyrev%2C+A.+E.&rft.au=Krasnyk%2C+E.+V.&rft.date=2024-05-01&rft.pub=Pleiades+Publishing&rft.issn=0967-0912&rft.eissn=1935-0988&rft.volume=54&rft.issue=5&rft.spage=446&rft.epage=456&rft_id=info:doi/10.3103%2FS0967091224700906&rft.externalDocID=10_3103_S0967091224700906 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0967-0912&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0967-0912&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0967-0912&client=summon |