On the Choice of Equivalent Electrical Circuits for the Aluminum Alloys Oxide Coatings Studies by Electrochemical Impedance Spectroscopy

This paper reviews research on the application of equivalent electrical circuits (EEC) for extracting electrochemical parameters of the aluminum alloys oxide coatings. Based on the published research and experimental data gathered by authors we conclude that the most common EEC, applicable to nonsea...

Full description

Saved in:
Bibliographic Details
Published in:Steel in translation Vol. 54; no. 5; pp. 446 - 456
Main Authors: Medvedev, I. M., Kutyrev, A. E., Krasnyk, E. V.
Format: Journal Article
Language:English
Published: Moscow Pleiades Publishing 01-05-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper reviews research on the application of equivalent electrical circuits (EEC) for extracting electrochemical parameters of the aluminum alloys oxide coatings. Based on the published research and experimental data gathered by authors we conclude that the most common EEC, applicable to nonsealed coatings and coatings with different sealing, is dual-circuit, consisting of two parallel connected resistors and constant phase elements (CPE). When corrosion damage is introduced the circuit can still be applied except for sufficient degradation of the surface, in which the total impedance is dominated by the double capacitance layer and the impedance can be modeled by the Randles circuit.
AbstractList This paper reviews research on the application of equivalent electrical circuits (EEC) for extracting electrochemical parameters of the aluminum alloys oxide coatings. Based on the published research and experimental data gathered by authors we conclude that the most common EEC, applicable to nonsealed coatings and coatings with different sealing, is dual-circuit, consisting of two parallel connected resistors and constant phase elements (CPE). When corrosion damage is introduced the circuit can still be applied except for sufficient degradation of the surface, in which the total impedance is dominated by the double capacitance layer and the impedance can be modeled by the Randles circuit.
Author Kutyrev, A. E.
Medvedev, I. M.
Krasnyk, E. V.
Author_xml – sequence: 1
  givenname: I. M.
  surname: Medvedev
  fullname: Medvedev, I. M.
  email: medvedevim@viam.ru
  organization: All-Russian Scientific-Research Institute of Aviation Materials of the National Research Center “Kurchatov Institute”
– sequence: 2
  givenname: A. E.
  surname: Kutyrev
  fullname: Kutyrev, A. E.
  organization: All-Russian Scientific-Research Institute of Aviation Materials of the National Research Center “Kurchatov Institute”
– sequence: 3
  givenname: E. V.
  surname: Krasnyk
  fullname: Krasnyk, E. V.
  organization: All-Russian Scientific-Research Institute of Aviation Materials of the National Research Center “Kurchatov Institute”
BookMark eNp9kE1OwzAQhS1UJNrCAdj5AgE7jp14WUUFKlXqot1Hru20rhI72AkiN-DYuD87JFYz0nvfm9GbgYl1VgPwjNELwYi8bhFnOeI4TbMcIY7YHZhiTmiCeFFMwPQsJ2f9AcxCOCFEWUrxFPxsLOyPGpZHZ6SGrobLz8F8iUbbHi4bLXtvpGhgabwcTB9g7fwFWDRDa-zQxqVxY4Cbb6NijBO9sYcAt_2gjA5wP95SnDzq9hK1ajuthI3Xtt1FCdJ14yO4r0UT9NNtzsHubbkrP5L15n1VLtaJLChLqOCioJpSXqQkyxmmqsCyloopRvZYsKzmPBNE5ZipukB5us9ItGda5ByTlMwBvsbKeDd4XVedN63wY4VRdW6y-tNkZNIrE6LXHrSvTm7wNn75D_QLtVJ4uQ
Cites_doi 10.1016/j.corsci.2010.03.004
10.1016/j.electacta.2011.05.092
10.1016/j.corsci.2008.09.008
10.1149/1.2969277
10.18577/2307-6046-2019-0-6-51-64
10.1016/0010-938x(84)90115-x
10.31044/1813-7016-2021-0-3-42-48
10.1149/1.2163811
10.1016/s0010-938x(97)00019-x
10.1016/S0010-938X(01)00082-8
10.1002/sca.21081
10.1016/j.surfcoat.2013.07.018
10.1016/j.electacta.2016.06.131
10.18577/2071-9140-2015-0-2-76-87
10.1016/j.surfcoat.2018.12.092
10.1016/0013-4686(88)85021-7
10.1016/j.electacta.2013.02.010
10.18577/2307-6046-2016-0-5-10-10
10.1016/j.corsci.2015.03.021
10.1002/sia.6633
10.1016/s0257-8972(01)01681-4
10.18577/2071-9140-2014-0-4-9-17
10.1134/s2070205117040165
10.1016/j.surfcoat.2007.10.019
10.1016/j.surfcoat.2015.12.024
10.1016/j.electacta.2009.03.083
10.1016/0010-938x(89)90036-x
10.1016/j.corsci.2009.06.031
10.1149/2.0231610jes
10.18577/2307-6046-2019-0-8-67-78
10.1016/j.surfcoat.2005.10.031
10.1134/S1023193522060076
10.1149/1.1393301
10.1016/j.apsusc.2008.08.106
10.1149/1.2108756
10.1016/j.apsusc.2013.07.047
10.17580/tsm.2016.08.13
10.5402/2012/323676
10.1016/s0010-938x(02)00137-3
10.18577/2071-9140-2017-0-S-186-194
10.1023/A:1003569330080
10.1149/1.2095786
ContentType Journal Article
Copyright Allerton Press, Inc. 2024. ISSN 0967-0912, Steel in Translation, 2024, Vol. 54, No. 5, pp. 446–456. © Allerton Press, Inc., 2024. Russian Text © The Author(s), 2024, published in Korroziya: Zashchita, Materialy, 2024, No. 14, pp. 18–32.
Copyright_xml – notice: Allerton Press, Inc. 2024. ISSN 0967-0912, Steel in Translation, 2024, Vol. 54, No. 5, pp. 446–456. © Allerton Press, Inc., 2024. Russian Text © The Author(s), 2024, published in Korroziya: Zashchita, Materialy, 2024, No. 14, pp. 18–32.
DBID AAYXX
CITATION
DOI 10.3103/S0967091224700906
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1935-0988
EndPage 456
ExternalDocumentID 10_3103_S0967091224700906
GroupedDBID -58
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
123
1N0
29Q
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
408
40D
40E
5VS
6NX
8FE
8FG
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACCUX
ACDTI
ACGFS
ACHSB
ACHXU
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADRFC
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
CAG
CCPQU
COF
CS3
D1I
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HCIFZ
HF~
HG6
HLICF
HMJXF
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
I~X
I~Z
J-C
JBSCW
JZLTJ
KB.
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P9N
PDBOC
PF0
PT4
Q2X
QOR
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCM
SDH
SHX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
XU3
YLTOR
Z7R
Z7S
Z7Y
Z7Z
Z85
ZMTXR
~A9
AAYXX
AAYZH
CITATION
ID FETCH-LOGICAL-c856-5a9a85e55982347615d81cfcd6d63b1a64f994a3d716df8072b43e554ea791323
IEDL.DBID AEJHL
ISSN 0967-0912
IngestDate Fri Nov 22 01:50:46 EST 2024
Fri Sep 27 04:31:35 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords electrochemical impedance spectroscopy
electrochemistry
anodic oxide coatings
aluminum alloys
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c856-5a9a85e55982347615d81cfcd6d63b1a64f994a3d716df8072b43e554ea791323
PageCount 11
ParticipantIDs crossref_primary_10_3103_S0967091224700906
springer_journals_10_3103_S0967091224700906
PublicationCentury 2000
PublicationDate 2024-05-00
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-00
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
PublicationTitle Steel in translation
PublicationTitleAbbrev Steel Transl
PublicationYear 2024
Publisher Pleiades Publishing
Publisher_xml – name: Pleiades Publishing
References Kablov, E.N., New generation materials, Zashch. Bezop., 2014, no. 4, pp. 28–29.
ZhaoX.-H.ZuoYu.ZhaoJ.-M.XiongJ.-P.TangY.-M.A study on the self-sealing process of anodic films on aluminum by EISSurf. Coat. Technol.2006200684668531:CAS:528:DC%2BD28Xls1Gnt7s%3D10.1016/j.surfcoat.2005.10.031
FrancoM.AnoopS.Uma RaniR.SharmaA.K.Porous layer characterization of anodized and black-anodized aluminium by electrochemical studiesISRN Corros.201220123236761:CAS:528:DC%2BC3sXhtVamsr7O10.5402/2012/323676
MutluR.N.MertB.D.AteşS.GündüzS.YazıcıB.Enhanced corrosion resistance and surface characterization of anodized 7075 AlProt. Met. Phys. Chem. Surf.2017537337421:CAS:528:DC%2BC2sXht1aktrjL10.1134/s2070205117040165
CarangeloA.CurioniM.AcquestaA.MonettaT.BellucciF.Application of EIS to in situ characterization of hydrothermal sealing of anodized aluminum alloys: Comparison between hexavalent chromium-based sealing, hot water sealing and cerium-based sealingJ. Electrochem. Soc.2016163c619c6261:CAS:528:DC%2BC28XhsV2ks7bL10.1149/2.0231610jes
RisovićD.PavlovićŽ.Performance assessment of methods for estimation of fractal dimension from scanning electron microscope imagesScanning2013354024111:CAS:528:DC%2BC3sXhvFGisrbK10.1002/sca.2108123483485
Kablov, E.N., Antipov, V.V., and Klochkova, Yu.Yu., New generation aluminum–lithium alloys and laminated alumina–glass plastics on their basis, Tsvetnye Met., 2016, no. 8, pp. 86–91. https://doi.org/10.17580/tsm.2016.08.13
MulderW.H.SluytersJ.H.An explanation of depressed semi-circular arcs in impedance plots for irreversible electrode reactionsElectrochim. Acta1988333033101:CAS:528:DyaL1cXhvFClsrs%3D10.1016/0013-4686(88)85021-7
KumarC.S.RaoV.Sh.RajaV.S.SharmaA.K.MayannaS.M.Corrosion behaviour of solar reflector coatings on AA 2024T3—An electrochemical impedance spectroscopy studyCorros. Sci20024438739310.1016/S0010-938X(01)00082-8
HitzigJ.JüttnerK.LorenzW.J.PaatschW.AC-impedance measurements on corroded porous aluminum oxide filmsJ. Electrochem. Soc.19861338878921:CAS:528:DyaL28XitlarsLY%3D10.1149/1.2108756
HitzigJ.JüttnerK.LorenzW.J.PaatschW.AC-impedance measurements on porous aluminium oxide filmsCorros. Sci.1984249459521:CAS:528:DyaL2MXltlSjtg%3D%3D10.1016/0010-938x(84)90115-x
LópezV.GonzálezJ.A.OteroE.EscuderoE.MorcilloM.Atmospheric corrosion of bare and anodised aluminium in a wide range of environmental conditions. Part II: Electrochemical responsesSurf. Coat. Technol.200215323524410.1016/s0257-8972(01)01681-4
Karimova, S.A., Kutyrev, A.E., Pavlovskaya, T.G., and Zakharov, K.E., Low temperature sealing of anodic oxide coatings on parts of aluminum alloys, Aviats. Mater. Tekhnol., 2014, no. 4, pp. 9–17. https://doi.org/10.18577/2071-9140-2014-0-4-9-17
BartoloméMaJ., del Río, J.F., Escudero, E., Feliu, S., López, V., Otero, E., and González, J.A., Behaviour of different bare and anodised aluminium alloys in the atmosphereSurf. Coat. Technol.2008202278327931:CAS:528:DC%2BD1cXit1SrtLY%3D10.1016/j.surfcoat.2007.10.019
HuangYu.ShihH.DaughertyJ.MansfeldF.Evaluation of the properties of anodized aluminum 6061 subjected to thermal cycling treatment using electrochemical impedance spectroscopy (EIS)Corros. Sci.200951249325011:CAS:528:DC%2BD1MXhtV2nt7fI10.1016/j.corsci.2009.06.031
Kablov, E.N., Startsev, O.V., and Medvedev, I.M., Review of international experience on corrosion and corrosion protection, Aviats. Mater. Tekhnol., 2015, no. 2, pp. 76–87. https://doi.org/10.18577/2071-9140-2015-0-2-76-87
Antipov, V.V., Medvedev, I.M., Kutyrev, A.E., and Volkov, I.A., Development of method for rapid evaluation of protective properties of anodic oxide coatings during neutral salt spray chamber testing, Korroz.: Mater., Zashch., 2021, no. 3, pp. 42–48. https://doi.org/10.31044/1813-7016-2021-0-3-42-48
SuayJ.J.GiménezE.RodríguezT.HabbibK.SauraJ.J.Characterization of anodized and sealed aluminium by EISCorros. Sci.2003456116241:CAS:528:DC%2BD38XnvFSrurY%3D10.1016/s0010-938x(02)00137-3
García-RubioM.de LaraM.P.OcónP.DiekhoffS.BenekeM.LavíaA.GarcíaI.Effect of postreatment on the corrosion behaviour of tartaric–sulphuric anodic filmsElectrochim. Acta200954478948001:CAS:528:DC%2BD1MXmt1Gntrs%3D10.1016/j.electacta.2009.03.083
Antipov, V.V., Medvedev, I.M., Kutyrev, A.E., and Volkov, I.A., Rapid assessment of hot water sealed anodic oxide coatings protective properties during NaCl immersion testing, Tr. VIAM, 2019, no. 8, pp. 67–78. https://doi.org/10.18577/2307-6046-2019-0-8-67-78
García-RubioM.OcónP.CurioniM.ThompsonG.E.SkeldonP.LavíaA.GarcíaI.Degradation of the corrosion resistance of anodic oxide films through immersion in the anodising electrolyteCorros. Sci.201052221922271:CAS:528:DC%2BC3cXmtVGisrY%3D10.1016/j.corsci.2010.03.004
GonzalezJ.A.LopezV.OteroE.BautistaA.LizarbeR.BarbaC.BaldonedoJ.L.Overaging of sealed and unsealed aluminium oxide filmsCorros. Sci.199739110911181:CAS:528:DyaK2sXktVCku7o%3D10.1016/s0010-938x(97)00019-x
Antipov, V.V., Prospects for development of aluminium, magnesium and titanium alloys for aerospace engineering, Aviats. Mater. Tekhnol., 2017, no. s, pp. 186–194. https://doi.org/10.18577/2071-9140-2017-0-S-186-194
HuangYu.ShihH.HuangH.DaughertyJ.WuSh.RamanathanS.ChangCh.MansfeldF.Evaluation of the corrosion resistance of anodized aluminum 6061 using electrochemical impedance spectroscopy (EIS)Corros. Sci.200850356935751:CAS:528:DC%2BD1cXhsVCnurzI10.1016/j.corsci.2008.09.008
Veys-RenauxD.ChahbounN.RoccaE.Anodizing of multiphase aluminium alloys in sulfuric acid: In-situ electrochemical behaviour and oxide propertiesElectrochim. Acta2016211105610651:CAS:528:DC%2BC28XhtFCru77K10.1016/j.electacta.2016.06.131
WangSh.PengH.ShaoZh.ZhaoQ.DuN.Sealing of anodized aluminum with phytic acid solutionSurf. Coat. Technol.20162861551641:CAS:528:DC%2BC28Xps1Gkug%3D%3D10.1016/j.surfcoat.2015.12.024
BoisierG.PébèreN.DruezC.VillatteM.SuelS.FESEM and EIS study of sealed AA2024 T3 anodized in sulfuric acid electrolytes: Influence of tartaric acidJ. Electrochem. Soc.2008155c5211:CAS:528:DC%2BD1cXhtFOru7fN10.1149/1.2969277
HuN.DongX.HeX.BrowningJ.F.SchaeferD.W.Effect of sealing on the morphology of anodized aluminum oxideCorros. Sci.20159717241:CAS:528:DC%2BC2MXmtlOjsbk%3D10.1016/j.corsci.2015.03.021
LeeJ.JungU.KimW.ChungW.Effects of residual water in the pores of aluminum anodic oxide layers prior to sealing on corrosion resistanceAppl. Surf. Sci.20132839419461:CAS:528:DC%2BC3sXht1Whtb7N10.1016/j.apsusc.2013.07.047
WhelanM.CassidyJ.DuffyB.Sol–gel sealing characteristics for corrosion resistance of anodised aluminiumSurf. Coat. Technol.201323586961:CAS:528:DC%2BC3sXhtF2ms7bI10.1016/j.surfcoat.2013.07.018
MansfeldF.KendigM.W.Evaluation of anodized aluminum surfaces with electrochemical impedance spectroscopyJ. Electrochem. Soc.19881358288331:CAS:528:DyaL1cXitFantLk%3D10.1149/1.2095786
GonzálezJ.A.FeliuS.BautistaA.OteroE.Changes in cold sealed aluminium oxide films during ageingJ. Appl. Electrochem.19992984385210.1023/A:1003569330080
LópezV.BartoloméM.J.EscuderoE.OteroE.GonzálezJ.A.Comparison by SEM, TEM, and EIS of hydrothermally sealed and cold sealed aluminum anodic oxidesJ. Electrochem. Soc.2006153b751:CAS:528:DC%2BD28XhtlOjsbY%3D10.1149/1.2163811
Antipov, V.V., Medvedev, I.M., Kutyrev, A.E., and Zhitnyuk, S.V., The investigation of electrochemical properties of nonsealed oxide coatings on 1163, V‑1461, V96C3pch aluminum alloys during accelerated testing, Tr. VIAM, 2019, no. 6, pp. 51–64. https://doi.org/10.18577/2307-6046-2019-0-6-51-64
WangR.WangL.HeCh.LuM.SunL.Studies on the sealing processes of corrosion resistant coatings formed on 2024 aluminium alloy with tartaric-sulfuric anodizingSurf. Coat. Technol.20193603693751:CAS:528:DC%2BC1MXhsVamtLg%3D10.1016/j.surfcoat.2018.12.092
GonzálezJ.A.LópezV.OteroE.BautistaA.Postsealing changes in porous aluminum oxide films obtained in sulfuric acid solutionsJ. Electrochem. Soc.200014798410.1149/1.1393301
Chesnokov, D.V., Antipov, V.V., and Kulyushina, N.V., The method of accelerated laboratory tests of aluminum alloys for determination of their corrosion resistance in conditions of the sea atmosphere, Tr. VIAM, 2016, no. 6, pp. 90–97. https://doi.org/10.18577/2307-6046-2016-0-5-10-10
KumarR.KantR.Theory of quasi-reversible charge transfer admittance on finite self-affine fractal electrodeElectrochim. Acta201156711271231:CAS:528:DC%2BC3MXpvVOmt78%3D10.1016/j.electacta.2011.05.092
RisovićD.PoljačekS.M.FurićK.GojoM.Inferring fractal dimension of rough/porous surfaces—A comparison of SEM image analysis and electrochemical impedance spectroscopy methodsAppl. Surf. Sci.2008255306330701:CAS:528:DC%2BD1cXhsVChsrvI10.1016/j.apsusc.2008.08.106
JüttnerK.LorenzW.J.PaatschW.The role of surface inhomogeneities in corrosion processes-electrochemical impedance spectroscopy (EIS) on different aluminium oxide filmsCorros. Sci.19892927928810.1016/0010-938x(89)90036-x
MedvedevI.M.KutyrevA.E.VolkovI.A.The study of the corrosion damage influence on the impedance of anodic oxide coatingsRuss. J. Electrochem.2022584714811:CAS:528:DC%2BB38XhslWis7nK10.1134/S1023193522060076
KantR.SarathbabuM.SrivastavSh.Effect of uncompensated solution resistance on quasireversible charge transfer at rough and finite fractal electrodeElectrochim. Acta2013952372451:CAS:528:DC%2BC3sXksFyisLs%3D10.1016/j.electacta.2013.02.010
Prada RamirezO.M.QueirozF.M.TeradaM.DonatusU.CostaI.OlivierM.De MeloH.G.EIS investigation of a Ce-based posttreatment step on the corrosion behaviour of Alclad AA2024 anodized in TSASurf. Interface Anal.201951126012751:CAS:528:DC%2BC1MXkt1agsb4%3D10.1002/sia.6633
1921_CR4
J.A. González (1921_CR7) 1999; 29
1921_CR37
1921_CR3
I.M. Medvedev (1921_CR11) 2022; 58
J. Hitzig (1921_CR12) 1986; 133
1921_CR5
R. Kumar (1921_CR14) 2011; 56
1921_CR2
1921_CR1
1921_CR38
G. Boisier (1921_CR27) 2008; 155
Yu. Huang (1921_CR34) 2008; 50
C.S. Kumar (1921_CR42) 2002; 44
J. Lee (1921_CR36) 2013; 283
Sh. Wang (1921_CR18) 2016; 286
D. Veys-Renaux (1921_CR25) 2016; 211
R. Kant (1921_CR13) 2013; 95
W.H. Mulder (1921_CR17) 1988; 33
R.N. Mutlu (1921_CR24) 2017; 53
1921_CR8
A. Carangelo (1921_CR19) 2016; 163
D. Risović (1921_CR16) 2013; 35
O.M. Prada Ramirez (1921_CR20) 2019; 51
D. Risović (1921_CR15) 2008; 255
X.-H. Zhao (1921_CR10) 2006; 200
1921_CR29
M. Franco (1921_CR28) 2012; 2012
F. Mansfeld (1921_CR40) 1988; 135
Yu. Huang (1921_CR35) 2009; 51
R. Wang (1921_CR43) 2019; 360
M. García-Rubio (1921_CR33) 2010; 52
J. Hitzig (1921_CR39) 1984; 24
V. López (1921_CR21) 2002; 153
J.A. Gonzalez (1921_CR22) 1997; 39
M. García-Rubio (1921_CR9) 2009; 54
J.J. Suay (1921_CR41) 2003; 45
V. López (1921_CR31) 2006; 153
Ma Bartolomé (1921_CR6) 2008; 202
J.A. González (1921_CR23) 2000; 147
K. Jüttner (1921_CR32) 1989; 29
M. Whelan (1921_CR26) 2013; 235
N. Hu (1921_CR30) 2015; 97
References_xml – volume: 52
  start-page: 2219
  year: 2010
  ident: 1921_CR33
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2010.03.004
  contributor:
    fullname: M. García-Rubio
– volume: 56
  start-page: 7112
  year: 2011
  ident: 1921_CR14
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2011.05.092
  contributor:
    fullname: R. Kumar
– volume: 50
  start-page: 3569
  year: 2008
  ident: 1921_CR34
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2008.09.008
  contributor:
    fullname: Yu. Huang
– volume: 155
  start-page: c521
  year: 2008
  ident: 1921_CR27
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2969277
  contributor:
    fullname: G. Boisier
– ident: 1921_CR8
  doi: 10.18577/2307-6046-2019-0-6-51-64
– volume: 24
  start-page: 945
  year: 1984
  ident: 1921_CR39
  publication-title: Corros. Sci.
  doi: 10.1016/0010-938x(84)90115-x
  contributor:
    fullname: J. Hitzig
– ident: 1921_CR38
  doi: 10.31044/1813-7016-2021-0-3-42-48
– volume: 153
  start-page: b75
  year: 2006
  ident: 1921_CR31
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2163811
  contributor:
    fullname: V. López
– volume: 39
  start-page: 1109
  year: 1997
  ident: 1921_CR22
  publication-title: Corros. Sci.
  doi: 10.1016/s0010-938x(97)00019-x
  contributor:
    fullname: J.A. Gonzalez
– volume: 44
  start-page: 387
  year: 2002
  ident: 1921_CR42
  publication-title: Corros. Sci
  doi: 10.1016/S0010-938X(01)00082-8
  contributor:
    fullname: C.S. Kumar
– volume: 35
  start-page: 402
  year: 2013
  ident: 1921_CR16
  publication-title: Scanning
  doi: 10.1002/sca.21081
  contributor:
    fullname: D. Risović
– volume: 235
  start-page: 86
  year: 2013
  ident: 1921_CR26
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2013.07.018
  contributor:
    fullname: M. Whelan
– volume: 211
  start-page: 1056
  year: 2016
  ident: 1921_CR25
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.06.131
  contributor:
    fullname: D. Veys-Renaux
– ident: 1921_CR4
  doi: 10.18577/2071-9140-2015-0-2-76-87
– volume: 360
  start-page: 369
  year: 2019
  ident: 1921_CR43
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2018.12.092
  contributor:
    fullname: R. Wang
– ident: 1921_CR5
– volume: 33
  start-page: 303
  year: 1988
  ident: 1921_CR17
  publication-title: Electrochim. Acta
  doi: 10.1016/0013-4686(88)85021-7
  contributor:
    fullname: W.H. Mulder
– volume: 95
  start-page: 237
  year: 2013
  ident: 1921_CR13
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2013.02.010
  contributor:
    fullname: R. Kant
– ident: 1921_CR3
  doi: 10.18577/2307-6046-2016-0-5-10-10
– volume: 97
  start-page: 17
  year: 2015
  ident: 1921_CR30
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2015.03.021
  contributor:
    fullname: N. Hu
– volume: 51
  start-page: 1260
  year: 2019
  ident: 1921_CR20
  publication-title: Surf. Interface Anal.
  doi: 10.1002/sia.6633
  contributor:
    fullname: O.M. Prada Ramirez
– volume: 153
  start-page: 235
  year: 2002
  ident: 1921_CR21
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/s0257-8972(01)01681-4
  contributor:
    fullname: V. López
– ident: 1921_CR29
  doi: 10.18577/2071-9140-2014-0-4-9-17
– volume: 53
  start-page: 733
  year: 2017
  ident: 1921_CR24
  publication-title: Prot. Met. Phys. Chem. Surf.
  doi: 10.1134/s2070205117040165
  contributor:
    fullname: R.N. Mutlu
– volume: 202
  start-page: 2783
  year: 2008
  ident: 1921_CR6
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2007.10.019
  contributor:
    fullname: Ma Bartolomé
– volume: 286
  start-page: 155
  year: 2016
  ident: 1921_CR18
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2015.12.024
  contributor:
    fullname: Sh. Wang
– volume: 54
  start-page: 4789
  year: 2009
  ident: 1921_CR9
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2009.03.083
  contributor:
    fullname: M. García-Rubio
– volume: 29
  start-page: 279
  year: 1989
  ident: 1921_CR32
  publication-title: Corros. Sci.
  doi: 10.1016/0010-938x(89)90036-x
  contributor:
    fullname: K. Jüttner
– volume: 51
  start-page: 2493
  year: 2009
  ident: 1921_CR35
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2009.06.031
  contributor:
    fullname: Yu. Huang
– volume: 163
  start-page: c619
  year: 2016
  ident: 1921_CR19
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0231610jes
  contributor:
    fullname: A. Carangelo
– ident: 1921_CR37
  doi: 10.18577/2307-6046-2019-0-8-67-78
– volume: 200
  start-page: 6846
  year: 2006
  ident: 1921_CR10
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2005.10.031
  contributor:
    fullname: X.-H. Zhao
– volume: 58
  start-page: 471
  year: 2022
  ident: 1921_CR11
  publication-title: Russ. J. Electrochem.
  doi: 10.1134/S1023193522060076
  contributor:
    fullname: I.M. Medvedev
– volume: 147
  start-page: 984
  year: 2000
  ident: 1921_CR23
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1393301
  contributor:
    fullname: J.A. González
– volume: 255
  start-page: 3063
  year: 2008
  ident: 1921_CR15
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2008.08.106
  contributor:
    fullname: D. Risović
– volume: 133
  start-page: 887
  year: 1986
  ident: 1921_CR12
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2108756
  contributor:
    fullname: J. Hitzig
– volume: 283
  start-page: 941
  year: 2013
  ident: 1921_CR36
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2013.07.047
  contributor:
    fullname: J. Lee
– ident: 1921_CR1
  doi: 10.17580/tsm.2016.08.13
– volume: 2012
  start-page: 323676
  year: 2012
  ident: 1921_CR28
  publication-title: ISRN Corros.
  doi: 10.5402/2012/323676
  contributor:
    fullname: M. Franco
– volume: 45
  start-page: 611
  year: 2003
  ident: 1921_CR41
  publication-title: Corros. Sci.
  doi: 10.1016/s0010-938x(02)00137-3
  contributor:
    fullname: J.J. Suay
– ident: 1921_CR2
  doi: 10.18577/2071-9140-2017-0-S-186-194
– volume: 29
  start-page: 843
  year: 1999
  ident: 1921_CR7
  publication-title: J. Appl. Electrochem.
  doi: 10.1023/A:1003569330080
  contributor:
    fullname: J.A. González
– volume: 135
  start-page: 828
  year: 1988
  ident: 1921_CR40
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2095786
  contributor:
    fullname: F. Mansfeld
SSID ssj0056251
Score 2.3198922
Snippet This paper reviews research on the application of equivalent electrical circuits (EEC) for extracting electrochemical parameters of the aluminum alloys oxide...
SourceID crossref
springer
SourceType Aggregation Database
Publisher
StartPage 446
SubjectTerms Chemistry and Materials Science
Materials Science
Title On the Choice of Equivalent Electrical Circuits for the Aluminum Alloys Oxide Coatings Studies by Electrochemical Impedance Spectroscopy
URI https://link.springer.com/article/10.3103/S0967091224700906
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagXWDgjSgveWACBdLYie2xKqkKQnRoB7bIiWMRAUlpGon-A3425zwQFTDAluFsRfb5vu_s03cInbnatalWxOoq8GBKId0JhaMtCJbaEbY2EG6uLsbs_oFf-0Ymx_m8ukifLpsXyTJQl2mlTa7GwLUZgBtADgNeYFS22wA9Lvh2u-ffDu-a-GsYfdknD-wtM6B6y_x5kmU0Wn4KLRFmsPmff9tCGzWfxL3KAbbRSpzuoPUvKoO76H2UYqB5uP-YQVTAmcb-a5GAhwHeYL9sg2N2CveTWVQk8xwDjy0H9CBwJWnxAh_P2SLHo7dEwTSZNKXSOa5LEHG4qGcxzbdK9QF8A2RcGX_Cpr_93ChmZtPFHpoM_El_aNUNGKyIu57lSiG5GxsJd4dQBtxH8W6kI-Upj4Rd6VEtBJVEQc6lNLeZE1IC5jSWTECWS_ZRK83S-ABhyZRyRMRVTKQpLBUh40LHSvFQA2WLOui82YdgWslsBJCemNUNvq1uB1002xDUJy7_3frwT9ZHaM0B2lKVNB6j1nxWxCdoNVfFae1nHwCXy0E
link.rule.ids 315,782,786,27933,27934,41073,42142,48344,48347,49649,49652,52153
linkProvider Springer Nature
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagHYCBN6I8PTCBItrYeXis2lRUlHZoh3aKnDgWkSApTSPRf8DP5uwkEhUwwJbhfIp8l7vv4vN3CN1Y0mpSKYjREuDBlEK5EzBTGhAspcmaUqVw9eti7AynbtdTNDmkuguju92rI0kdqXVd2ST3YwDbDmQ3yDkOAANFs11XZOdmDdXb09msWwVgBen1oDyQN9SC4jDzZyXr6Wj9LFSnmN7ev15uH-2WiBK3Cxc4QBtRcoh2vvAMHqGPUYIB6OHOcwpxAacSe295DD4GGQd7ehCOshXuxIswj5cZBiSrF7QhdMVJ_goPL-kqw6P3WICalKtm6QyXTYg4WJVa1PgtzT-A-wDHhfIorCbcLxVnZjpfHaNJz5t0HoxyBIMRupZtWJxx14oUibtJqAPoR7itUIbCFjYJWtymkjHKiYCqS0i36ZgBJSBOI-4wqHPJCaolaRKdIswdIUwWuiIiXLWWssBxmYyEcAMJoC1soNvKEP68INrwoUBRu-t_290GuqvM4JffXPa79NmfpK_R1sPkaeAP-sPHc7RtAogpGhwvUG25yKNLtJmJ_Kp0uk-WJc9z
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA-6gejBb3F-5uBJKduatGlOMmarQ9mE7eCttE2DBW3nuoL7D_yzfUlbcKgH8VboS1qSl_d-L3n5PYQuLGl1qBTE6ArQYEoh3Am5KQ0wltLkHalcuNq6GLPhk3PjKpqc6_oujM52r48kyzsNiqUpnbenQrZ1jNkh7TEAbwaeDvwPA5CgKLebaleMNlCzN5jcerUxVvBeF80DeUM1KA82f-5k2TUtn4tqd-Nt_ftHt9FmhTRxr1SNHbQSp7to4wv_4B76GKUYACDuP2dgL3AmsftWJKB78AHs6gI5ag5xP5lFRTLPMSBc3aAHJi1Ji1d4eMkWOR69JwK6yQKVRJ3jKjkRh4uqF1WWS_MS4AHAdKE0DY-n-o26FrPYRxPPnfTvjKo0gxE5lm1YAQ8cK1bk7iahDFCRcLqRjIQtbBJ2A5tKzmlABERjQjodZoaUgDiNA8Yh_iUHqJFmaXyIcMCEMHnkiJgEKuWUh8zhMhbCCSWAuaiFLutJ8aclAYcPgYsaXf_b6LbQVT0lfrUW89-lj_4kfY7WHm88_2EwvD9G6yZgmzLv8QQ15rMiPkWruSjOKv37BNap2Ao
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Choice+of+Equivalent+Electrical+Circuits+for+the+Aluminum+Alloys+Oxide+Coatings+Studies+by+Electrochemical+Impedance+Spectroscopy&rft.jtitle=Steel+in+translation&rft.au=Medvedev%2C+I.+M.&rft.au=Kutyrev%2C+A.+E.&rft.au=Krasnyk%2C+E.+V.&rft.date=2024-05-01&rft.pub=Pleiades+Publishing&rft.issn=0967-0912&rft.eissn=1935-0988&rft.volume=54&rft.issue=5&rft.spage=446&rft.epage=456&rft_id=info:doi/10.3103%2FS0967091224700906&rft.externalDocID=10_3103_S0967091224700906
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0967-0912&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0967-0912&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0967-0912&client=summon