Balancing the Transmittance and Carrier‐Collection Ability of Ag Nanowire Networks for High‐Performance Self‐Powered Ga 2 O 3 Schottky Photodiode

Self‐powered solar‐blind photodiodes with convenient operation, easy fabrication, and weak‐light sensitivity, are highly desired in environmental monitoring and deep space exploration. Ga 2 O 3 with its bandgap directly corresponding to solar‐blind waveband is a promising candidate material for sola...

Full description

Saved in:
Bibliographic Details
Published in:Advanced optical materials Vol. 9; no. 15
Main Authors: Tan, Pengju, Zhao, Xiaolong, Hou, Xiaohu, Yu, Yangtong, Yu, Shunjie, Ma, Xiaolan, Zhang, Zhongfang, Ding, Mengfan, Xu, Guangwei, Hu, Qin, Gao, Nan, Sun, Haiding, Mu, Wenxiang, Jia, Zhitai, Tao, Xutang, Long, Shibing
Format: Journal Article
Language:English
Published: 01-08-2021
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Self‐powered solar‐blind photodiodes with convenient operation, easy fabrication, and weak‐light sensitivity, are highly desired in environmental monitoring and deep space exploration. Ga 2 O 3 with its bandgap directly corresponding to solar‐blind waveband is a promising candidate material for solar‐blind photodetection. However, ever‐reported self‐powered Ga 2 O 3 photodiodes suffer unsatisfactory photoresponse performance, owing to unideal interface and electrode transmittance. Here, Ag nanowire (AgNW) networks with excellent solar‐blind ultraviolet transmittance are introduced to form self‐powered AgNW–Ga 2 O 3 photodiodes with sharp Schottky interfaces. The tradeoff between solar‐blind ultraviolet transmittance and carrier‐collection ability of the sparse AgNW network is systematically studied and the AgNW density is optimized for the best photoresponse. Expansion of depletion region outwards the AgNW–Ga 2 O 3 contact and the field crowding effect facilitate the high photoresponse. As a result, the champion AgNW–Ga 2 O 3 Schottky photodiode exhibits excellent sensitivity for weak‐light detection, including considerable responsivity of 14.8 mA W –1 , ultrahigh photo‐to‐dark‐current ratio above 1.2 × 10 5 , high rejection ratio ( R 254 nm / R 365 nm ) of 2.6 × 10 3 , and fast response speed (rise/decay time of 20/24 ms) under self‐powered mode. Balancing the transmittance and carrier‐collection ability of elaborate electrode provides an alternative strategy to achieve high‐performance self‐powered Ga 2 O 3 photodetectors for future weak‐light‐sensitive optoelectronic systems.
AbstractList Self‐powered solar‐blind photodiodes with convenient operation, easy fabrication, and weak‐light sensitivity, are highly desired in environmental monitoring and deep space exploration. Ga 2 O 3 with its bandgap directly corresponding to solar‐blind waveband is a promising candidate material for solar‐blind photodetection. However, ever‐reported self‐powered Ga 2 O 3 photodiodes suffer unsatisfactory photoresponse performance, owing to unideal interface and electrode transmittance. Here, Ag nanowire (AgNW) networks with excellent solar‐blind ultraviolet transmittance are introduced to form self‐powered AgNW–Ga 2 O 3 photodiodes with sharp Schottky interfaces. The tradeoff between solar‐blind ultraviolet transmittance and carrier‐collection ability of the sparse AgNW network is systematically studied and the AgNW density is optimized for the best photoresponse. Expansion of depletion region outwards the AgNW–Ga 2 O 3 contact and the field crowding effect facilitate the high photoresponse. As a result, the champion AgNW–Ga 2 O 3 Schottky photodiode exhibits excellent sensitivity for weak‐light detection, including considerable responsivity of 14.8 mA W –1 , ultrahigh photo‐to‐dark‐current ratio above 1.2 × 10 5 , high rejection ratio ( R 254 nm / R 365 nm ) of 2.6 × 10 3 , and fast response speed (rise/decay time of 20/24 ms) under self‐powered mode. Balancing the transmittance and carrier‐collection ability of elaborate electrode provides an alternative strategy to achieve high‐performance self‐powered Ga 2 O 3 photodetectors for future weak‐light‐sensitive optoelectronic systems.
Author Hou, Xiaohu
Gao, Nan
Tan, Pengju
Zhang, Zhongfang
Ding, Mengfan
Tao, Xutang
Zhao, Xiaolong
Ma, Xiaolan
Yu, Yangtong
Jia, Zhitai
Yu, Shunjie
Xu, Guangwei
Hu, Qin
Mu, Wenxiang
Sun, Haiding
Long, Shibing
Author_xml – sequence: 1
  givenname: Pengju
  surname: Tan
  fullname: Tan, Pengju
  organization: School of Microelectronics University of Science and Technology of China Hefei 230026 China
– sequence: 2
  givenname: Xiaolong
  surname: Zhao
  fullname: Zhao, Xiaolong
  organization: School of Microelectronics University of Science and Technology of China Hefei 230026 China, Frontiers Science Center for Planetary Exploration and Emerging Technologies University of Science and Technology of China Hefei 230026 China
– sequence: 3
  givenname: Xiaohu
  surname: Hou
  fullname: Hou, Xiaohu
  organization: School of Microelectronics University of Science and Technology of China Hefei 230026 China
– sequence: 4
  givenname: Yangtong
  surname: Yu
  fullname: Yu, Yangtong
  organization: School of Microelectronics University of Science and Technology of China Hefei 230026 China
– sequence: 5
  givenname: Shunjie
  surname: Yu
  fullname: Yu, Shunjie
  organization: School of Microelectronics University of Science and Technology of China Hefei 230026 China
– sequence: 6
  givenname: Xiaolan
  surname: Ma
  fullname: Ma, Xiaolan
  organization: School of Microelectronics University of Science and Technology of China Hefei 230026 China
– sequence: 7
  givenname: Zhongfang
  surname: Zhang
  fullname: Zhang, Zhongfang
  organization: School of Microelectronics University of Science and Technology of China Hefei 230026 China
– sequence: 8
  givenname: Mengfan
  surname: Ding
  fullname: Ding, Mengfan
  organization: School of Microelectronics University of Science and Technology of China Hefei 230026 China
– sequence: 9
  givenname: Guangwei
  surname: Xu
  fullname: Xu, Guangwei
  organization: School of Microelectronics University of Science and Technology of China Hefei 230026 China, Frontiers Science Center for Planetary Exploration and Emerging Technologies University of Science and Technology of China Hefei 230026 China
– sequence: 10
  givenname: Qin
  surname: Hu
  fullname: Hu, Qin
  organization: School of Microelectronics University of Science and Technology of China Hefei 230026 China, Frontiers Science Center for Planetary Exploration and Emerging Technologies University of Science and Technology of China Hefei 230026 China
– sequence: 11
  givenname: Nan
  surname: Gao
  fullname: Gao, Nan
  organization: School of Microelectronics University of Science and Technology of China Hefei 230026 China, Frontiers Science Center for Planetary Exploration and Emerging Technologies University of Science and Technology of China Hefei 230026 China
– sequence: 12
  givenname: Haiding
  surname: Sun
  fullname: Sun, Haiding
  organization: School of Microelectronics University of Science and Technology of China Hefei 230026 China, Frontiers Science Center for Planetary Exploration and Emerging Technologies University of Science and Technology of China Hefei 230026 China
– sequence: 13
  givenname: Wenxiang
  surname: Mu
  fullname: Mu, Wenxiang
  organization: State Key Laboratory of Crystal Materials Shandong University Jinan 250100 China
– sequence: 14
  givenname: Zhitai
  surname: Jia
  fullname: Jia, Zhitai
  organization: State Key Laboratory of Crystal Materials Shandong University Jinan 250100 China
– sequence: 15
  givenname: Xutang
  surname: Tao
  fullname: Tao, Xutang
  organization: State Key Laboratory of Crystal Materials Shandong University Jinan 250100 China
– sequence: 16
  givenname: Shibing
  orcidid: 0000-0001-6220-4461
  surname: Long
  fullname: Long, Shibing
  organization: School of Microelectronics University of Science and Technology of China Hefei 230026 China, Frontiers Science Center for Planetary Exploration and Emerging Technologies University of Science and Technology of China Hefei 230026 China
BookMark eNpNkM1OwkAUhScGExHZur4vUJyf0pYlNgomBEhg30ynd2CknTHTSQg7H8Ed7-eTWNQYV-eek3PP4rslPessEnLP6IhRyh9k5ZoRp7wzLBVXpM_ZZBwxmrLev_uGDNv2lXYdmopJnPbJ-VHW0ipjdxD2CFsvbduYELoMQdoKcum9Qf_5_pG7ukYVjLMwLU1twgmchukOltK6o_EISwxH5w8taOdhbnb77muNvnPN994Ga32J3BE9VjCTwGEFAjZq70I4nGDdqauMq_COXGtZtzj81QHZPj9t83m0WM1e8ukiUlksopKxEpOUco6lzriMY11lMdJJlmgqEx0LnSmaIhcKE6lRJ5ylcqyVVEmix5kYkNHPrPKubT3q4s2bRvpTwWhxAVtcwBZ_YMUXGGdy5A
CitedBy_id crossref_primary_10_1002_smtd_202300933
crossref_primary_10_1021_acsanm_2c04410
crossref_primary_10_1021_acsami_1c18229
crossref_primary_10_1063_5_0151130
crossref_primary_10_1088_1361_6463_ac7f68
crossref_primary_10_1016_j_vacuum_2023_112277
crossref_primary_10_1007_s40843_022_2167_x
crossref_primary_10_1002_adom_202200512
crossref_primary_10_1021_acsami_3c15561
crossref_primary_10_1039_D1TC02471J
crossref_primary_10_1007_s00339_023_06459_7
crossref_primary_10_1016_j_ceramint_2022_01_071
crossref_primary_10_1109_LED_2023_3325228
crossref_primary_10_1360_SSPMA_2022_0008
crossref_primary_10_1016_j_jallcom_2022_163801
crossref_primary_10_1109_JSTQE_2021_3124824
crossref_primary_10_1109_LED_2021_3108190
crossref_primary_10_1109_JSEN_2021_3121803
crossref_primary_10_7498_aps_73_20240267
crossref_primary_10_1002_adom_202301964
crossref_primary_10_1109_LED_2022_3227583
crossref_primary_10_1016_j_jallcom_2023_171596
crossref_primary_10_1021_acsami_4c06132
crossref_primary_10_1088_1361_6463_ac77c9
crossref_primary_10_1063_5_0059061
crossref_primary_10_1063_5_0155537
crossref_primary_10_1088_1361_6463_acb6a5
crossref_primary_10_1016_j_jallcom_2022_168070
crossref_primary_10_1088_1361_6463_ac1af2
crossref_primary_10_1364_OE_494216
crossref_primary_10_1109_TED_2024_3373382
crossref_primary_10_1016_j_fmre_2021_11_002
crossref_primary_10_1002_admi_202202488
crossref_primary_10_1109_LED_2023_3297101
Cites_doi 10.1103/PhysRevApplied.13.024051
10.1063/1.5143309
10.1039/C9TC06011A
10.1038/srep04788
10.1109/LPT.2018.2874725
10.1002/adma.200901108
10.1021/acs.nanolett.5b00906
10.1038/srep09279
10.1039/C9TC00134D
10.1021/acsami.8b05141
10.1002/adfm.201900935
10.1021/acsami.8b05336
10.7567/JJAP.57.060313
10.1016/j.mtphys.2020.100193
10.1002/adma.201605177
10.1039/C6TC02467J
10.1016/j.mtphys.2020.100335
10.1063/1.1889240
10.1039/C7TC04754A
10.1002/adfm.201700264
10.1002/adfm.201001140
10.1088/0957-0233/10/11/317
10.1021/acsphotonics.9b00032
10.1063/1.4829065
10.1088/1361-6463/abae36
10.1016/j.matlet.2019.127074
10.1021/acsami.5b11956
10.1002/adma.201604049
10.1021/acsaelm.0c00301
10.1109/JSEN.2012.2192103
10.1063/1.364427
10.1021/acsami.9b11012
10.1002/adfm.201809013
10.1007/s11814-017-0279-7
10.1039/C8TC01122B
10.1021/acsami.7b09812
10.1063/1.4755770
10.1021/acs.jpclett.9b02793
10.1063/1.5006941
10.1021/acsami.9b09166
10.1002/aelm.201900389
10.1016/j.mtcomm.2020.101105
10.1021/acsami.6b13771
10.1039/C7TC03746E
10.1039/C8CE02189A
10.1002/adom.201800068
10.1002/pssr.201800198
10.1002/adfm.201806006
10.1002/adom.201801563
10.1039/C5RA10837C
10.1088/1361-6463/abbb45
10.1149/2162-8777/aba741
10.1016/j.jallcom.2019.153532
10.1021/acsphotonics.8b00174
10.1109/TED.2020.2999027
10.1039/C7TC01741C
10.1364/PRJ.7.000381
10.1021/acsnano.8b07997
10.1088/1361-6641/aa59b0
10.1021/acsphotonics.7b01486
10.1088/1361-6528/ab82d4
10.1143/JJAP.48.011605
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1002/adom.202100173
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2195-1071
ExternalDocumentID 10_1002_adom_202100173
GroupedDBID 0R~
1OC
31~
33P
8-1
A00
AAESR
AAHHS
AAIHA
AAMNL
AANLZ
AAXRX
AAYXX
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
AZFZN
AZVAB
BFHJK
BMXJE
BRXPI
CITATION
D-B
DCZOG
DPXWK
EBS
EJD
G-S
GODZA
HGLYW
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
O9-
P2W
R.K
ROL
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
ID FETCH-LOGICAL-c843-b11be67022ebf82a44fd84e0986f0a6f43f8c07e23ce6afef6217a5fcac66f583
ISSN 2195-1071
IngestDate Thu Nov 21 22:50:41 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 15
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c843-b11be67022ebf82a44fd84e0986f0a6f43f8c07e23ce6afef6217a5fcac66f583
ORCID 0000-0001-6220-4461
ParticipantIDs crossref_primary_10_1002_adom_202100173
PublicationCentury 2000
PublicationDate 2021-08-00
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-00
PublicationDecade 2020
PublicationTitle Advanced optical materials
PublicationYear 2021
References e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_62_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – ident: e_1_2_8_35_1
  doi: 10.1103/PhysRevApplied.13.024051
– ident: e_1_2_8_48_1
  doi: 10.1063/1.5143309
– ident: e_1_2_8_31_1
  doi: 10.1039/C9TC06011A
– ident: e_1_2_8_62_1
  doi: 10.1038/srep04788
– ident: e_1_2_8_59_1
  doi: 10.1109/LPT.2018.2874725
– ident: e_1_2_8_8_1
  doi: 10.1002/adma.200901108
– ident: e_1_2_8_20_1
  doi: 10.1021/acs.nanolett.5b00906
– ident: e_1_2_8_49_1
  doi: 10.1038/srep09279
– ident: e_1_2_8_19_1
  doi: 10.1039/C9TC00134D
– ident: e_1_2_8_53_1
  doi: 10.1021/acsami.8b05141
– ident: e_1_2_8_30_1
  doi: 10.1002/adfm.201900935
– ident: e_1_2_8_38_1
  doi: 10.1021/acsami.8b05336
– ident: e_1_2_8_58_1
  doi: 10.7567/JJAP.57.060313
– ident: e_1_2_8_37_1
  doi: 10.1016/j.mtphys.2020.100193
– ident: e_1_2_8_41_1
  doi: 10.1002/adma.201605177
– ident: e_1_2_8_43_1
  doi: 10.1039/C6TC02467J
– ident: e_1_2_8_29_1
  doi: 10.1016/j.mtphys.2020.100335
– ident: e_1_2_8_52_1
  doi: 10.1063/1.1889240
– ident: e_1_2_8_33_1
  doi: 10.1039/C7TC04754A
– ident: e_1_2_8_14_1
  doi: 10.1002/adfm.201700264
– ident: e_1_2_8_11_1
  doi: 10.1002/adfm.201001140
– ident: e_1_2_8_51_1
  doi: 10.1088/0957-0233/10/11/317
– ident: e_1_2_8_13_1
  doi: 10.1021/acsphotonics.9b00032
– ident: e_1_2_8_7_1
  doi: 10.1063/1.4829065
– ident: e_1_2_8_42_1
  doi: 10.1088/1361-6463/abae36
– ident: e_1_2_8_28_1
  doi: 10.1016/j.matlet.2019.127074
– ident: e_1_2_8_57_1
  doi: 10.1021/acsami.5b11956
– ident: e_1_2_8_10_1
  doi: 10.1002/adma.201604049
– ident: e_1_2_8_27_1
  doi: 10.1021/acsaelm.0c00301
– ident: e_1_2_8_6_1
  doi: 10.1109/JSEN.2012.2192103
– ident: e_1_2_8_55_1
  doi: 10.1063/1.364427
– ident: e_1_2_8_23_1
  doi: 10.1021/acsami.9b11012
– ident: e_1_2_8_16_1
  doi: 10.1002/adfm.201809013
– ident: e_1_2_8_44_1
  doi: 10.1007/s11814-017-0279-7
– ident: e_1_2_8_24_1
  doi: 10.1039/C8TC01122B
– ident: e_1_2_8_56_1
  doi: 10.1021/acsami.7b09812
– ident: e_1_2_8_54_1
  doi: 10.1063/1.4755770
– ident: e_1_2_8_32_1
  doi: 10.1021/acs.jpclett.9b02793
– ident: e_1_2_8_2_1
  doi: 10.1063/1.5006941
– ident: e_1_2_8_46_1
  doi: 10.1021/acsami.9b09166
– ident: e_1_2_8_47_1
  doi: 10.1002/aelm.201900389
– ident: e_1_2_8_34_1
  doi: 10.1016/j.mtcomm.2020.101105
– ident: e_1_2_8_5_1
  doi: 10.1021/acsami.6b13771
– ident: e_1_2_8_22_1
  doi: 10.1039/C7TC03746E
– ident: e_1_2_8_61_1
  doi: 10.1039/C8CE02189A
– ident: e_1_2_8_9_1
  doi: 10.1002/adom.201800068
– ident: e_1_2_8_40_1
  doi: 10.1002/pssr.201800198
– ident: e_1_2_8_1_1
  doi: 10.1002/adfm.201806006
– ident: e_1_2_8_12_1
  doi: 10.1002/adom.201801563
– ident: e_1_2_8_50_1
  doi: 10.1039/C5RA10837C
– ident: e_1_2_8_4_1
  doi: 10.1088/1361-6463/abbb45
– ident: e_1_2_8_45_1
  doi: 10.1149/2162-8777/aba741
– ident: e_1_2_8_25_1
  doi: 10.1016/j.jallcom.2019.153532
– ident: e_1_2_8_36_1
  doi: 10.1021/acsphotonics.8b00174
– ident: e_1_2_8_26_1
  doi: 10.1109/TED.2020.2999027
– ident: e_1_2_8_18_1
  doi: 10.1039/C7TC01741C
– ident: e_1_2_8_3_1
  doi: 10.1364/PRJ.7.000381
– ident: e_1_2_8_15_1
  doi: 10.1021/acsnano.8b07997
– ident: e_1_2_8_21_1
  doi: 10.1088/1361-6641/aa59b0
– ident: e_1_2_8_39_1
  doi: 10.1021/acsphotonics.7b01486
– ident: e_1_2_8_60_1
  doi: 10.1088/1361-6528/ab82d4
– ident: e_1_2_8_17_1
  doi: 10.1143/JJAP.48.011605
SSID ssj0001073947
Score 2.2886617
Snippet Self‐powered solar‐blind photodiodes with convenient operation, easy fabrication, and weak‐light sensitivity, are highly desired in environmental monitoring...
SourceID crossref
SourceType Aggregation Database
Title Balancing the Transmittance and Carrier‐Collection Ability of Ag Nanowire Networks for High‐Performance Self‐Powered Ga 2 O 3 Schottky Photodiode
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV05b9swFCacdOnSu-iNNxToYAiVSImSRzV1k6kxEA_JZFA8XPeQgkQeuvUndOv_6y_pIylRcuEhHQoDsvFMCgLfh3fpHYS8TkWi0bRXkZ5JGaVMyUigoxHxuIozIajgrirt5Cz_eF68n6fzyaSf7jrQ_iunkYa8tpWz_8DtcFMk4G_kOV6R63i9Ed_f2VxF2RdBOVX0bdO2oTLgSFzZIXUhycFFDvy88NIlyrpX7uXayt3GNjK2NcE2e8s1bnB5IWHvYlR1cKa_muEPO3sNTdljMaXT0ylzzT7b9sv36QK_G7Vp1E4KUtlnIjSXPraOdrQ_rCGyUPt04nr9eTuKdrtI7_lGoAzvdLDLBd725E9h8YWjXQhXMbAeRztoEnLtOqFI7WxJdFk9Se-hdVJ9NgZvtldZ-OazQjW2IwG1zaj8VJXdrtx_acuQw-j7PdOV3b8K-w_ILYoiz0pcxhZDtM--EHXT7sLD9h1EY_p29xFGFtLI1FneI3c6HwVKD677ZKLrB-Ru569Apw2uH5JfAWuAWIMdrAFiDTqs_f7xc0AZdCiDxkC5hh5l0KMMEFFgUYa7RvgCiy9L8siCYwEUToFBjywYkPWILD_Ml0cnUTfoI5JFyqIqSSrNc7QmdWUKKtLUqCLV8azgJhbcpMwUMs41ZVJzYbTh6EeLzEghOTdZwR6Tw7qp9RMCKFtYhsdfKXRF8qzCVXFe8UzO8CNU8pS86c92denbuaz2M_LZjVc-J7cHpL4gh-3VVr8kB9dq-8qB4A8EtJcD
link.rule.ids 315,782,786,27933,27934
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Balancing+the+Transmittance+and+Carrier%E2%80%90Collection+Ability+of+Ag+Nanowire+Networks+for+High%E2%80%90Performance+Self%E2%80%90Powered+Ga+2+O+3+Schottky+Photodiode&rft.jtitle=Advanced+optical+materials&rft.au=Tan%2C+Pengju&rft.au=Zhao%2C+Xiaolong&rft.au=Hou%2C+Xiaohu&rft.au=Yu%2C+Yangtong&rft.date=2021-08-01&rft.issn=2195-1071&rft.eissn=2195-1071&rft.volume=9&rft.issue=15&rft_id=info:doi/10.1002%2Fadom.202100173&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adom_202100173
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2195-1071&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2195-1071&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2195-1071&client=summon