Balancing the Transmittance and Carrier‐Collection Ability of Ag Nanowire Networks for High‐Performance Self‐Powered Ga 2 O 3 Schottky Photodiode
Self‐powered solar‐blind photodiodes with convenient operation, easy fabrication, and weak‐light sensitivity, are highly desired in environmental monitoring and deep space exploration. Ga 2 O 3 with its bandgap directly corresponding to solar‐blind waveband is a promising candidate material for sola...
Saved in:
Published in: | Advanced optical materials Vol. 9; no. 15 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
01-08-2021
|
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Self‐powered solar‐blind photodiodes with convenient operation, easy fabrication, and weak‐light sensitivity, are highly desired in environmental monitoring and deep space exploration. Ga
2
O
3
with its bandgap directly corresponding to solar‐blind waveband is a promising candidate material for solar‐blind photodetection. However, ever‐reported self‐powered Ga
2
O
3
photodiodes suffer unsatisfactory photoresponse performance, owing to unideal interface and electrode transmittance. Here, Ag nanowire (AgNW) networks with excellent solar‐blind ultraviolet transmittance are introduced to form self‐powered AgNW–Ga
2
O
3
photodiodes with sharp Schottky interfaces. The tradeoff between solar‐blind ultraviolet transmittance and carrier‐collection ability of the sparse AgNW network is systematically studied and the AgNW density is optimized for the best photoresponse. Expansion of depletion region outwards the AgNW–Ga
2
O
3
contact and the field crowding effect facilitate the high photoresponse. As a result, the champion AgNW–Ga
2
O
3
Schottky photodiode exhibits excellent sensitivity for weak‐light detection, including considerable responsivity of 14.8 mA W
–1
, ultrahigh photo‐to‐dark‐current ratio above 1.2 × 10
5
, high rejection ratio (
R
254 nm
/
R
365 nm
) of 2.6 × 10
3
, and fast response speed (rise/decay time of 20/24 ms) under self‐powered mode. Balancing the transmittance and carrier‐collection ability of elaborate electrode provides an alternative strategy to achieve high‐performance self‐powered Ga
2
O
3
photodetectors for future weak‐light‐sensitive optoelectronic systems. |
---|---|
AbstractList | Self‐powered solar‐blind photodiodes with convenient operation, easy fabrication, and weak‐light sensitivity, are highly desired in environmental monitoring and deep space exploration. Ga
2
O
3
with its bandgap directly corresponding to solar‐blind waveband is a promising candidate material for solar‐blind photodetection. However, ever‐reported self‐powered Ga
2
O
3
photodiodes suffer unsatisfactory photoresponse performance, owing to unideal interface and electrode transmittance. Here, Ag nanowire (AgNW) networks with excellent solar‐blind ultraviolet transmittance are introduced to form self‐powered AgNW–Ga
2
O
3
photodiodes with sharp Schottky interfaces. The tradeoff between solar‐blind ultraviolet transmittance and carrier‐collection ability of the sparse AgNW network is systematically studied and the AgNW density is optimized for the best photoresponse. Expansion of depletion region outwards the AgNW–Ga
2
O
3
contact and the field crowding effect facilitate the high photoresponse. As a result, the champion AgNW–Ga
2
O
3
Schottky photodiode exhibits excellent sensitivity for weak‐light detection, including considerable responsivity of 14.8 mA W
–1
, ultrahigh photo‐to‐dark‐current ratio above 1.2 × 10
5
, high rejection ratio (
R
254 nm
/
R
365 nm
) of 2.6 × 10
3
, and fast response speed (rise/decay time of 20/24 ms) under self‐powered mode. Balancing the transmittance and carrier‐collection ability of elaborate electrode provides an alternative strategy to achieve high‐performance self‐powered Ga
2
O
3
photodetectors for future weak‐light‐sensitive optoelectronic systems. |
Author | Hou, Xiaohu Gao, Nan Tan, Pengju Zhang, Zhongfang Ding, Mengfan Tao, Xutang Zhao, Xiaolong Ma, Xiaolan Yu, Yangtong Jia, Zhitai Yu, Shunjie Xu, Guangwei Hu, Qin Mu, Wenxiang Sun, Haiding Long, Shibing |
Author_xml | – sequence: 1 givenname: Pengju surname: Tan fullname: Tan, Pengju organization: School of Microelectronics University of Science and Technology of China Hefei 230026 China – sequence: 2 givenname: Xiaolong surname: Zhao fullname: Zhao, Xiaolong organization: School of Microelectronics University of Science and Technology of China Hefei 230026 China, Frontiers Science Center for Planetary Exploration and Emerging Technologies University of Science and Technology of China Hefei 230026 China – sequence: 3 givenname: Xiaohu surname: Hou fullname: Hou, Xiaohu organization: School of Microelectronics University of Science and Technology of China Hefei 230026 China – sequence: 4 givenname: Yangtong surname: Yu fullname: Yu, Yangtong organization: School of Microelectronics University of Science and Technology of China Hefei 230026 China – sequence: 5 givenname: Shunjie surname: Yu fullname: Yu, Shunjie organization: School of Microelectronics University of Science and Technology of China Hefei 230026 China – sequence: 6 givenname: Xiaolan surname: Ma fullname: Ma, Xiaolan organization: School of Microelectronics University of Science and Technology of China Hefei 230026 China – sequence: 7 givenname: Zhongfang surname: Zhang fullname: Zhang, Zhongfang organization: School of Microelectronics University of Science and Technology of China Hefei 230026 China – sequence: 8 givenname: Mengfan surname: Ding fullname: Ding, Mengfan organization: School of Microelectronics University of Science and Technology of China Hefei 230026 China – sequence: 9 givenname: Guangwei surname: Xu fullname: Xu, Guangwei organization: School of Microelectronics University of Science and Technology of China Hefei 230026 China, Frontiers Science Center for Planetary Exploration and Emerging Technologies University of Science and Technology of China Hefei 230026 China – sequence: 10 givenname: Qin surname: Hu fullname: Hu, Qin organization: School of Microelectronics University of Science and Technology of China Hefei 230026 China, Frontiers Science Center for Planetary Exploration and Emerging Technologies University of Science and Technology of China Hefei 230026 China – sequence: 11 givenname: Nan surname: Gao fullname: Gao, Nan organization: School of Microelectronics University of Science and Technology of China Hefei 230026 China, Frontiers Science Center for Planetary Exploration and Emerging Technologies University of Science and Technology of China Hefei 230026 China – sequence: 12 givenname: Haiding surname: Sun fullname: Sun, Haiding organization: School of Microelectronics University of Science and Technology of China Hefei 230026 China, Frontiers Science Center for Planetary Exploration and Emerging Technologies University of Science and Technology of China Hefei 230026 China – sequence: 13 givenname: Wenxiang surname: Mu fullname: Mu, Wenxiang organization: State Key Laboratory of Crystal Materials Shandong University Jinan 250100 China – sequence: 14 givenname: Zhitai surname: Jia fullname: Jia, Zhitai organization: State Key Laboratory of Crystal Materials Shandong University Jinan 250100 China – sequence: 15 givenname: Xutang surname: Tao fullname: Tao, Xutang organization: State Key Laboratory of Crystal Materials Shandong University Jinan 250100 China – sequence: 16 givenname: Shibing orcidid: 0000-0001-6220-4461 surname: Long fullname: Long, Shibing organization: School of Microelectronics University of Science and Technology of China Hefei 230026 China, Frontiers Science Center for Planetary Exploration and Emerging Technologies University of Science and Technology of China Hefei 230026 China |
BookMark | eNpNkM1OwkAUhScGExHZur4vUJyf0pYlNgomBEhg30ynd2CknTHTSQg7H8Ed7-eTWNQYV-eek3PP4rslPessEnLP6IhRyh9k5ZoRp7wzLBVXpM_ZZBwxmrLev_uGDNv2lXYdmopJnPbJ-VHW0ipjdxD2CFsvbduYELoMQdoKcum9Qf_5_pG7ukYVjLMwLU1twgmchukOltK6o_EISwxH5w8taOdhbnb77muNvnPN994Ga32J3BE9VjCTwGEFAjZq70I4nGDdqauMq_COXGtZtzj81QHZPj9t83m0WM1e8ukiUlksopKxEpOUco6lzriMY11lMdJJlmgqEx0LnSmaIhcKE6lRJ5ylcqyVVEmix5kYkNHPrPKubT3q4s2bRvpTwWhxAVtcwBZ_YMUXGGdy5A |
CitedBy_id | crossref_primary_10_1002_smtd_202300933 crossref_primary_10_1021_acsanm_2c04410 crossref_primary_10_1021_acsami_1c18229 crossref_primary_10_1063_5_0151130 crossref_primary_10_1088_1361_6463_ac7f68 crossref_primary_10_1016_j_vacuum_2023_112277 crossref_primary_10_1007_s40843_022_2167_x crossref_primary_10_1002_adom_202200512 crossref_primary_10_1021_acsami_3c15561 crossref_primary_10_1039_D1TC02471J crossref_primary_10_1007_s00339_023_06459_7 crossref_primary_10_1016_j_ceramint_2022_01_071 crossref_primary_10_1109_LED_2023_3325228 crossref_primary_10_1360_SSPMA_2022_0008 crossref_primary_10_1016_j_jallcom_2022_163801 crossref_primary_10_1109_JSTQE_2021_3124824 crossref_primary_10_1109_LED_2021_3108190 crossref_primary_10_1109_JSEN_2021_3121803 crossref_primary_10_7498_aps_73_20240267 crossref_primary_10_1002_adom_202301964 crossref_primary_10_1109_LED_2022_3227583 crossref_primary_10_1016_j_jallcom_2023_171596 crossref_primary_10_1021_acsami_4c06132 crossref_primary_10_1088_1361_6463_ac77c9 crossref_primary_10_1063_5_0059061 crossref_primary_10_1063_5_0155537 crossref_primary_10_1088_1361_6463_acb6a5 crossref_primary_10_1016_j_jallcom_2022_168070 crossref_primary_10_1088_1361_6463_ac1af2 crossref_primary_10_1364_OE_494216 crossref_primary_10_1109_TED_2024_3373382 crossref_primary_10_1016_j_fmre_2021_11_002 crossref_primary_10_1002_admi_202202488 crossref_primary_10_1109_LED_2023_3297101 |
Cites_doi | 10.1103/PhysRevApplied.13.024051 10.1063/1.5143309 10.1039/C9TC06011A 10.1038/srep04788 10.1109/LPT.2018.2874725 10.1002/adma.200901108 10.1021/acs.nanolett.5b00906 10.1038/srep09279 10.1039/C9TC00134D 10.1021/acsami.8b05141 10.1002/adfm.201900935 10.1021/acsami.8b05336 10.7567/JJAP.57.060313 10.1016/j.mtphys.2020.100193 10.1002/adma.201605177 10.1039/C6TC02467J 10.1016/j.mtphys.2020.100335 10.1063/1.1889240 10.1039/C7TC04754A 10.1002/adfm.201700264 10.1002/adfm.201001140 10.1088/0957-0233/10/11/317 10.1021/acsphotonics.9b00032 10.1063/1.4829065 10.1088/1361-6463/abae36 10.1016/j.matlet.2019.127074 10.1021/acsami.5b11956 10.1002/adma.201604049 10.1021/acsaelm.0c00301 10.1109/JSEN.2012.2192103 10.1063/1.364427 10.1021/acsami.9b11012 10.1002/adfm.201809013 10.1007/s11814-017-0279-7 10.1039/C8TC01122B 10.1021/acsami.7b09812 10.1063/1.4755770 10.1021/acs.jpclett.9b02793 10.1063/1.5006941 10.1021/acsami.9b09166 10.1002/aelm.201900389 10.1016/j.mtcomm.2020.101105 10.1021/acsami.6b13771 10.1039/C7TC03746E 10.1039/C8CE02189A 10.1002/adom.201800068 10.1002/pssr.201800198 10.1002/adfm.201806006 10.1002/adom.201801563 10.1039/C5RA10837C 10.1088/1361-6463/abbb45 10.1149/2162-8777/aba741 10.1016/j.jallcom.2019.153532 10.1021/acsphotonics.8b00174 10.1109/TED.2020.2999027 10.1039/C7TC01741C 10.1364/PRJ.7.000381 10.1021/acsnano.8b07997 10.1088/1361-6641/aa59b0 10.1021/acsphotonics.7b01486 10.1088/1361-6528/ab82d4 10.1143/JJAP.48.011605 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1002/adom.202100173 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 2195-1071 |
ExternalDocumentID | 10_1002_adom_202100173 |
GroupedDBID | 0R~ 1OC 31~ 33P 8-1 A00 AAESR AAHHS AAIHA AAMNL AANLZ AAXRX AAYXX AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB AZFZN AZVAB BFHJK BMXJE BRXPI CITATION D-B DCZOG DPXWK EBS EJD G-S GODZA HGLYW HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY~ O9- P2W R.K ROL SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW |
ID | FETCH-LOGICAL-c843-b11be67022ebf82a44fd84e0986f0a6f43f8c07e23ce6afef6217a5fcac66f583 |
ISSN | 2195-1071 |
IngestDate | Thu Nov 21 22:50:41 EST 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 15 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c843-b11be67022ebf82a44fd84e0986f0a6f43f8c07e23ce6afef6217a5fcac66f583 |
ORCID | 0000-0001-6220-4461 |
ParticipantIDs | crossref_primary_10_1002_adom_202100173 |
PublicationCentury | 2000 |
PublicationDate | 2021-08-00 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-00 |
PublicationDecade | 2020 |
PublicationTitle | Advanced optical materials |
PublicationYear | 2021 |
References | e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_62_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – ident: e_1_2_8_35_1 doi: 10.1103/PhysRevApplied.13.024051 – ident: e_1_2_8_48_1 doi: 10.1063/1.5143309 – ident: e_1_2_8_31_1 doi: 10.1039/C9TC06011A – ident: e_1_2_8_62_1 doi: 10.1038/srep04788 – ident: e_1_2_8_59_1 doi: 10.1109/LPT.2018.2874725 – ident: e_1_2_8_8_1 doi: 10.1002/adma.200901108 – ident: e_1_2_8_20_1 doi: 10.1021/acs.nanolett.5b00906 – ident: e_1_2_8_49_1 doi: 10.1038/srep09279 – ident: e_1_2_8_19_1 doi: 10.1039/C9TC00134D – ident: e_1_2_8_53_1 doi: 10.1021/acsami.8b05141 – ident: e_1_2_8_30_1 doi: 10.1002/adfm.201900935 – ident: e_1_2_8_38_1 doi: 10.1021/acsami.8b05336 – ident: e_1_2_8_58_1 doi: 10.7567/JJAP.57.060313 – ident: e_1_2_8_37_1 doi: 10.1016/j.mtphys.2020.100193 – ident: e_1_2_8_41_1 doi: 10.1002/adma.201605177 – ident: e_1_2_8_43_1 doi: 10.1039/C6TC02467J – ident: e_1_2_8_29_1 doi: 10.1016/j.mtphys.2020.100335 – ident: e_1_2_8_52_1 doi: 10.1063/1.1889240 – ident: e_1_2_8_33_1 doi: 10.1039/C7TC04754A – ident: e_1_2_8_14_1 doi: 10.1002/adfm.201700264 – ident: e_1_2_8_11_1 doi: 10.1002/adfm.201001140 – ident: e_1_2_8_51_1 doi: 10.1088/0957-0233/10/11/317 – ident: e_1_2_8_13_1 doi: 10.1021/acsphotonics.9b00032 – ident: e_1_2_8_7_1 doi: 10.1063/1.4829065 – ident: e_1_2_8_42_1 doi: 10.1088/1361-6463/abae36 – ident: e_1_2_8_28_1 doi: 10.1016/j.matlet.2019.127074 – ident: e_1_2_8_57_1 doi: 10.1021/acsami.5b11956 – ident: e_1_2_8_10_1 doi: 10.1002/adma.201604049 – ident: e_1_2_8_27_1 doi: 10.1021/acsaelm.0c00301 – ident: e_1_2_8_6_1 doi: 10.1109/JSEN.2012.2192103 – ident: e_1_2_8_55_1 doi: 10.1063/1.364427 – ident: e_1_2_8_23_1 doi: 10.1021/acsami.9b11012 – ident: e_1_2_8_16_1 doi: 10.1002/adfm.201809013 – ident: e_1_2_8_44_1 doi: 10.1007/s11814-017-0279-7 – ident: e_1_2_8_24_1 doi: 10.1039/C8TC01122B – ident: e_1_2_8_56_1 doi: 10.1021/acsami.7b09812 – ident: e_1_2_8_54_1 doi: 10.1063/1.4755770 – ident: e_1_2_8_32_1 doi: 10.1021/acs.jpclett.9b02793 – ident: e_1_2_8_2_1 doi: 10.1063/1.5006941 – ident: e_1_2_8_46_1 doi: 10.1021/acsami.9b09166 – ident: e_1_2_8_47_1 doi: 10.1002/aelm.201900389 – ident: e_1_2_8_34_1 doi: 10.1016/j.mtcomm.2020.101105 – ident: e_1_2_8_5_1 doi: 10.1021/acsami.6b13771 – ident: e_1_2_8_22_1 doi: 10.1039/C7TC03746E – ident: e_1_2_8_61_1 doi: 10.1039/C8CE02189A – ident: e_1_2_8_9_1 doi: 10.1002/adom.201800068 – ident: e_1_2_8_40_1 doi: 10.1002/pssr.201800198 – ident: e_1_2_8_1_1 doi: 10.1002/adfm.201806006 – ident: e_1_2_8_12_1 doi: 10.1002/adom.201801563 – ident: e_1_2_8_50_1 doi: 10.1039/C5RA10837C – ident: e_1_2_8_4_1 doi: 10.1088/1361-6463/abbb45 – ident: e_1_2_8_45_1 doi: 10.1149/2162-8777/aba741 – ident: e_1_2_8_25_1 doi: 10.1016/j.jallcom.2019.153532 – ident: e_1_2_8_36_1 doi: 10.1021/acsphotonics.8b00174 – ident: e_1_2_8_26_1 doi: 10.1109/TED.2020.2999027 – ident: e_1_2_8_18_1 doi: 10.1039/C7TC01741C – ident: e_1_2_8_3_1 doi: 10.1364/PRJ.7.000381 – ident: e_1_2_8_15_1 doi: 10.1021/acsnano.8b07997 – ident: e_1_2_8_21_1 doi: 10.1088/1361-6641/aa59b0 – ident: e_1_2_8_39_1 doi: 10.1021/acsphotonics.7b01486 – ident: e_1_2_8_60_1 doi: 10.1088/1361-6528/ab82d4 – ident: e_1_2_8_17_1 doi: 10.1143/JJAP.48.011605 |
SSID | ssj0001073947 |
Score | 2.2886617 |
Snippet | Self‐powered solar‐blind photodiodes with convenient operation, easy fabrication, and weak‐light sensitivity, are highly desired in environmental monitoring... |
SourceID | crossref |
SourceType | Aggregation Database |
Title | Balancing the Transmittance and Carrier‐Collection Ability of Ag Nanowire Networks for High‐Performance Self‐Powered Ga 2 O 3 Schottky Photodiode |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV05b9swFCacdOnSu-iNNxToYAiVSImSRzV1k6kxEA_JZFA8XPeQgkQeuvUndOv_6y_pIylRcuEhHQoDsvFMCgLfh3fpHYS8TkWi0bRXkZ5JGaVMyUigoxHxuIozIajgrirt5Cz_eF68n6fzyaSf7jrQ_iunkYa8tpWz_8DtcFMk4G_kOV6R63i9Ed_f2VxF2RdBOVX0bdO2oTLgSFzZIXUhycFFDvy88NIlyrpX7uXayt3GNjK2NcE2e8s1bnB5IWHvYlR1cKa_muEPO3sNTdljMaXT0ylzzT7b9sv36QK_G7Vp1E4KUtlnIjSXPraOdrQ_rCGyUPt04nr9eTuKdrtI7_lGoAzvdLDLBd725E9h8YWjXQhXMbAeRztoEnLtOqFI7WxJdFk9Se-hdVJ9NgZvtldZ-OazQjW2IwG1zaj8VJXdrtx_acuQw-j7PdOV3b8K-w_ILYoiz0pcxhZDtM--EHXT7sLD9h1EY_p29xFGFtLI1FneI3c6HwVKD677ZKLrB-Ru569Apw2uH5JfAWuAWIMdrAFiDTqs_f7xc0AZdCiDxkC5hh5l0KMMEFFgUYa7RvgCiy9L8siCYwEUToFBjywYkPWILD_Ml0cnUTfoI5JFyqIqSSrNc7QmdWUKKtLUqCLV8azgJhbcpMwUMs41ZVJzYbTh6EeLzEghOTdZwR6Tw7qp9RMCKFtYhsdfKXRF8qzCVXFe8UzO8CNU8pS86c92denbuaz2M_LZjVc-J7cHpL4gh-3VVr8kB9dq-8qB4A8EtJcD |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Balancing+the+Transmittance+and+Carrier%E2%80%90Collection+Ability+of+Ag+Nanowire+Networks+for+High%E2%80%90Performance+Self%E2%80%90Powered+Ga+2+O+3+Schottky+Photodiode&rft.jtitle=Advanced+optical+materials&rft.au=Tan%2C+Pengju&rft.au=Zhao%2C+Xiaolong&rft.au=Hou%2C+Xiaohu&rft.au=Yu%2C+Yangtong&rft.date=2021-08-01&rft.issn=2195-1071&rft.eissn=2195-1071&rft.volume=9&rft.issue=15&rft_id=info:doi/10.1002%2Fadom.202100173&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adom_202100173 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2195-1071&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2195-1071&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2195-1071&client=summon |