Measurement of spherical tokamak plasma compression in a PCS-16 magnetized target fusion experiment

A sequence of magnetized target fusion devices built by General Fusion has compressed magnetically confined deuterium plasmas inside imploding aluminum liners. Here we describe the best-performing compression experiment, PCS-16, which was the fifth of the most recent experiments that compressed a sp...

Full description

Saved in:
Bibliographic Details
Published in:Nuclear fusion Vol. 65; no. 1; p. 16029
Main Authors: Howard, S.J., Reynolds, M., Froese, A., Zindler, R., Hildebrand, M., Mossman, A., Donaldson, M., Tyler, T., Froese, D., Eyrich, C., Epp, K., Bell, K., Carle, P., Gutjahr, C., Wong, A., Zawalski, W., Rablah, B., Sardari, J., McIlwraith, L., Bouchal, R., Wilkie, J., Ivanov, R., de Vietien, P., Khalzov, I.V., Barsky, S., Krotez, D., Delage, M., McNally, C.P., Laberge, M.
Format: Journal Article
Language:English
Published: 01-01-2025
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A sequence of magnetized target fusion devices built by General Fusion has compressed magnetically confined deuterium plasmas inside imploding aluminum liners. Here we describe the best-performing compression experiment, PCS-16, which was the fifth of the most recent experiments that compressed a spherical tokamak plasma configuration. In PCS-16, the plasma remained axisymmetric with δ B pol / B pol < 20 % to a high radial compression factor ( C R > 8 ) with significant poloidal flux conservation (77% up to C R = 1.7, and ≈ 30 % up to C R = 8.65 ) and a total compression time of 167 μ s . Magnetic energy of the plasma increased from 0.96 kJ poloidal and 17 kJ toroidal to a peak of 1.14 kJ poloidal and 29.9 kJ toroidal during the compression, while the thermal energy was in the range of 350 ± 25 J. Plasma equilibrium was a low- β state with β tor ≈ 4 % and β pol ≈ 15 % . Ingress of impurities from the lithium-coated aluminum wall was not the dominant effect. Neutron yield from D-D fusion increased significantly during compression. Thermodynamics during the early phase of compression ( C R < 1.7 ) were consistent with increasing Ohmic heating of the electrons due to a geometric increase in the current density at near-constant resistivity, and with increasing ion cooling that approximately matched ion compression heating power. Ion cooling by electrons was significant because the electrons were much cooler than the ions ( T e = 200 eV , T i = 600 eV ). Magnetohydrodynamic simulations were used to model the emergence of instabilities that increase electron thermal transport in the final phase of compression. Conditions for ideal stability were actively maintained during compression through a current ramp applied to the central shaft and, after this current ramp reached its peak two-thirds of the way through compression, we measured a transition in plasma behavior across multiple diagnostics.
AbstractList A sequence of magnetized target fusion devices built by General Fusion has compressed magnetically confined deuterium plasmas inside imploding aluminum liners. Here we describe the best-performing compression experiment, PCS-16, which was the fifth of the most recent experiments that compressed a spherical tokamak plasma configuration. In PCS-16, the plasma remained axisymmetric with δ B pol / B pol < 20 % to a high radial compression factor ( C R > 8 ) with significant poloidal flux conservation (77% up to C R = 1.7, and ≈ 30 % up to C R = 8.65 ) and a total compression time of 167 μ s . Magnetic energy of the plasma increased from 0.96 kJ poloidal and 17 kJ toroidal to a peak of 1.14 kJ poloidal and 29.9 kJ toroidal during the compression, while the thermal energy was in the range of 350 ± 25 J. Plasma equilibrium was a low- β state with β tor ≈ 4 % and β pol ≈ 15 % . Ingress of impurities from the lithium-coated aluminum wall was not the dominant effect. Neutron yield from D-D fusion increased significantly during compression. Thermodynamics during the early phase of compression ( C R < 1.7 ) were consistent with increasing Ohmic heating of the electrons due to a geometric increase in the current density at near-constant resistivity, and with increasing ion cooling that approximately matched ion compression heating power. Ion cooling by electrons was significant because the electrons were much cooler than the ions ( T e = 200 eV , T i = 600 eV ). Magnetohydrodynamic simulations were used to model the emergence of instabilities that increase electron thermal transport in the final phase of compression. Conditions for ideal stability were actively maintained during compression through a current ramp applied to the central shaft and, after this current ramp reached its peak two-thirds of the way through compression, we measured a transition in plasma behavior across multiple diagnostics.
Author Khalzov, I.V.
Laberge, M.
Ivanov, R.
Donaldson, M.
Delage, M.
Hildebrand, M.
Mossman, A.
Carle, P.
Howard, S.J.
Froese, D.
Epp, K.
Reynolds, M.
Sardari, J.
Tyler, T.
Barsky, S.
McIlwraith, L.
Krotez, D.
McNally, C.P.
Gutjahr, C.
Zawalski, W.
de Vietien, P.
Bell, K.
Froese, A.
Wilkie, J.
Bouchal, R.
Eyrich, C.
Zindler, R.
Wong, A.
Rablah, B.
Author_xml – sequence: 1
  givenname: S.J.
  orcidid: 0009-0007-3247-6096
  surname: Howard
  fullname: Howard, S.J.
– sequence: 2
  givenname: M.
  orcidid: 0000-0001-5880-2290
  surname: Reynolds
  fullname: Reynolds, M.
– sequence: 3
  givenname: A.
  orcidid: 0000-0002-1669-7397
  surname: Froese
  fullname: Froese, A.
– sequence: 4
  givenname: R.
  surname: Zindler
  fullname: Zindler, R.
– sequence: 5
  givenname: M.
  surname: Hildebrand
  fullname: Hildebrand, M.
– sequence: 6
  givenname: A.
  surname: Mossman
  fullname: Mossman, A.
– sequence: 7
  givenname: M.
  surname: Donaldson
  fullname: Donaldson, M.
– sequence: 8
  givenname: T.
  surname: Tyler
  fullname: Tyler, T.
– sequence: 9
  givenname: D.
  surname: Froese
  fullname: Froese, D.
– sequence: 10
  givenname: C.
  surname: Eyrich
  fullname: Eyrich, C.
– sequence: 11
  givenname: K.
  surname: Epp
  fullname: Epp, K.
– sequence: 12
  givenname: K.
  surname: Bell
  fullname: Bell, K.
– sequence: 13
  givenname: P.
  surname: Carle
  fullname: Carle, P.
– sequence: 14
  givenname: C.
  surname: Gutjahr
  fullname: Gutjahr, C.
– sequence: 15
  givenname: A.
  surname: Wong
  fullname: Wong, A.
– sequence: 16
  givenname: W.
  surname: Zawalski
  fullname: Zawalski, W.
– sequence: 17
  givenname: B.
  surname: Rablah
  fullname: Rablah, B.
– sequence: 18
  givenname: J.
  surname: Sardari
  fullname: Sardari, J.
– sequence: 19
  givenname: L.
  surname: McIlwraith
  fullname: McIlwraith, L.
– sequence: 20
  givenname: R.
  surname: Bouchal
  fullname: Bouchal, R.
– sequence: 21
  givenname: J.
  surname: Wilkie
  fullname: Wilkie, J.
– sequence: 22
  givenname: R.
  surname: Ivanov
  fullname: Ivanov, R.
– sequence: 23
  givenname: P.
  surname: de Vietien
  fullname: de Vietien, P.
– sequence: 24
  givenname: I.V.
  orcidid: 0000-0003-1355-0303
  surname: Khalzov
  fullname: Khalzov, I.V.
– sequence: 25
  givenname: S.
  surname: Barsky
  fullname: Barsky, S.
– sequence: 26
  givenname: D.
  surname: Krotez
  fullname: Krotez, D.
– sequence: 27
  givenname: M.
  surname: Delage
  fullname: Delage, M.
– sequence: 28
  givenname: C.P.
  orcidid: 0000-0002-2565-6626
  surname: McNally
  fullname: McNally, C.P.
– sequence: 29
  givenname: M.
  orcidid: 0009-0006-0093-2168
  surname: Laberge
  fullname: Laberge, M.
BookMark eNo9kFtLAzEQhYNUsK2--5g_sDaTZJPNoxRvUFGw78uQndS13QvJFtRf764VnwYOw3cO34LN2q4lxq5B3IAoihVYDZlW0qywckKpMzb_j2ZsLoR0WZ5DfsEWKX0IARqUmjP_TJiOkRpqB94Fnvp3irXHAx-6PTa45_0BU4Pcd00fKaW6a3ndcuSv67cMDG9w19JQf1PFB4w7Gng4_j7RZz-SJu4lOw94SHT1d5dse3-3XT9mm5eHp_XtJvOFUpnzxqMTflxNknJrnfbOSHAmQDCaBIIBUlLnSkptIA_WVFaayilbWfRqycQJ62OXUqRQ9mM_xq8SRDk5Kich5SSkPDlSPyRFW-Y
Cites_doi 10.1063/1.4959797
10.1063/1.1537038
10.1007/s10894-008-9167-9
10.1142/p121)
10.1088/0029-5515/25/9/020
10.1063/1.2336749
10.1287/mnsc.37.7.886
10.1103/PhysRevLett.40.38
10.1016/j.hedp.2005.07.001
10.1063/1.1705989
10.1088/0029-5515/26/7/003
10.1016/0891-3919(58)90139-6
10.1103/PhysRevLett.72.3666
10.1063/1.1580815
10.1088/0029-5515/25/9/029
10.1088/0741-3335/54/11/113001
10.2172/4203067)
10.1088/1741-4326/ab74a2
10.1063/1.859218
10.1063/1.864345
10.1063/1.1448832
10.1088/0029-5515/25/9/025
10.1103/RevModPhys.58.741
10.1063/1.872850
10.1007/s10894-007-9091-4
10.1088/0029-5515/53/9/093003
10.1007/s10894-023-00367-7
10.13182/FST85-A40083
10.13182/FST95-A11947106
10.1063/5.0020010
10.1016/0092-640X(77)90026-2
10.1016/0029-554X(64)90333-7
10.1103/PhysRevLett.125.155002
10.1103/PhysRevLett.68.1722
10.1103/PhysRevLett.82.2681
10.2172/110784
10.1088/0741-3335/54/11/113001)
10.1063/1.1310589
10.1103/PhysRevLett.29.1495
10.1063/1.1692832
10.1063/1.4967862
10.1103/PhysRevLett.65.721
10.1063/1.5126148
10.1103/PhysRevLett.91.045004
10.1088/0741-3335/56/10/103001
10.1088/1741-4326/abe68c
10.1088/0741-3335/26/1A/308
10.1002/nav.3800260304
10.13182/FST95-A30382
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1088/1741-4326/ad9033
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1741-4326
ExternalDocumentID 10_1088_1741_4326_ad9033
GroupedDBID -~X
123
1JI
4.4
5B3
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
AAYXX
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
ACNCT
ADWVK
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CITATION
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
GROUPED_DOAJ
HAK
H~9
IHE
IJHAN
IOP
IZVLO
KOT
LAP
N5L
N9A
O3W
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
W28
XPP
ID FETCH-LOGICAL-c833-9c6ca90c174e2e57794c962196f1f64e0a161e32453224615f76d726d937d7ac3
ISSN 0029-5515
IngestDate Wed Nov 27 13:02:51 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c833-9c6ca90c174e2e57794c962196f1f64e0a161e32453224615f76d726d937d7ac3
ORCID 0000-0003-1355-0303
0000-0002-2565-6626
0009-0006-0093-2168
0000-0002-1669-7397
0000-0001-5880-2290
0009-0007-3247-6096
OpenAccessLink https://doi.org/10.1088/1741-4326/ad9033
ParticipantIDs crossref_primary_10_1088_1741_4326_ad9033
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Nuclear fusion
PublicationYear 2025
References Howard (nfad9033bib41) 2018; vol 63
Colchin (nfad9033bib51) 2003; 74
Furth (nfad9033bib45) 1970; 13
Post (nfad9033bib72) 1977; 20
Nelson (nfad9033bib10) 1994; 72
Bol (nfad9033bib24) 1974
Grad (nfad9033bib44) 1958
Hooper (nfad9033bib43) 2012; 54
Glasser (nfad9033bib62) 2016; 23
Wesson (nfad9033bib65) 2011
Luxon (nfad9033bib47) 1985; 8
Young (nfad9033bib40) 2017; vol 62
Taylor (nfad9033bib54) 1986; 58
Leemis (nfad9033bib59) 1991; 37
Turner (nfad9033bib46) 1983; 26
Crotinger (nfad9033bib70) 1997
Henins (nfad9033bib22) 1989
Carle (nfad9033bib52) 2016; 87
Howard (nfad9033bib3) 2009; 28
Kaita (nfad9033bib28) 1986; 26
Yamada (nfad9033bib8) 1990; 65
Siemon (nfad9033bib33) 1999; 8
O’Shea (nfad9033bib42) 2018; vol 63
Dunlea (nfad9033bib21) 2020; 27
O’Shea (nfad9033bib37) 2016; vol 61
Reynolds (nfad9033bib36) 2016; vol 61
Tanga (nfad9033bib32) 1987
Redd (nfad9033bib12) 2002; 9
ITER (nfad9033bib48) 2002
Miller (nfad9033bib34) 1980
Goldston (nfad9033bib71) 1995
Laberge (nfad9033bib2) 2008; 27
Grove (nfad9033bib30) 1985; 25
Wang (nfad9033bib63) 2020; 27
Bellan (nfad9033bib6) 2000
Goldston (nfad9033bib66) 1984; 26
Ellis (nfad9033bib23) 1985; 25
Gomez (nfad9033bib19) 2020; 125
Biewer (nfad9033bib68) 2003; 91
Yamada (nfad9033bib20) 1990; 2
Brennan (nfad9033bib50) 2021; 61
Marshall (nfad9033bib5) 1960; 3
Askinazi (nfad9033bib26) 2001; 4
Laberge (nfad9033bib38) 2017; vol 62
Chung (nfad9033bib56) 2005; 1
Wurden (nfad9033bib15) 2001; 72
Kirkpatrick (nfad9033bib1) 1995; 27
Nagata (nfad9033bib14) 2003; 10
Strand (nfad9033bib53) 2006; 77
Brennan (nfad9033bib49) 2020; 60
Robinson (nfad9033bib27) 1985; 25
Lewis (nfad9033bib60) 1979; 26
Beresnyak (nfad9033bib61) 2023
Bol (nfad9033bib25) 1972; 29
Froese (nfad9033bib55) 2022; vol 67
Reynolds (nfad9033bib39) 2017; vol 62
Browning (nfad9033bib9) 1992; 68
Froese (nfad9033bib4) 2014
Degnan (nfad9033bib16) 2013; 53
Tóth (nfad9033bib64) 1996; 34
Rechester (nfad9033bib67) 1978; 40
Eddleman (nfad9033bib69) 1995
Shimamura (nfad9033bib13) 1995; 27
Tait (nfad9033bib29) 1985; vol 1
Degnan (nfad9033bib17) 1999; 82
Raman (nfad9033bib7) 2014; 56
Kirtley (nfad9033bib18) 2023; 42
Roush (nfad9033bib57) 1964; 31
Wesson (nfad9033bib31) 1999; vol 13
Jarboe (nfad9033bib11) 1998; 5
James (nfad9033bib58)
Howard (nfad9033bib35) 2016; vol 61
References_xml – volume: 87
  start-page: 11E104
  year: 2016
  ident: nfad9033bib52
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.4959797
  contributor:
    fullname: Carle
– volume: 74
  start-page: 2068
  year: 2003
  ident: nfad9033bib51
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1537038
  contributor:
    fullname: Colchin
– volume: 28
  start-page: 156
  year: 2009
  ident: nfad9033bib3
  publication-title: J. Fusion Energy
  doi: 10.1007/s10894-008-9167-9
  contributor:
    fullname: Howard
– year: 2000
  ident: nfad9033bib6
  doi: 10.1142/p121)
  contributor:
    fullname: Bellan
– volume: 25
  start-page: 1101
  year: 1985
  ident: nfad9033bib27
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/25/9/020
  contributor:
    fullname: Robinson
– volume: 77
  year: 2006
  ident: nfad9033bib53
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.2336749
  contributor:
    fullname: Strand
– volume: vol 61
  start-page: p C10.108
  year: 2016
  ident: nfad9033bib36
  contributor:
    fullname: Reynolds
– volume: 37
  start-page: 886
  year: 1991
  ident: nfad9033bib59
  publication-title: Manage. Sci.
  doi: 10.1287/mnsc.37.7.886
  contributor:
    fullname: Leemis
– volume: vol 62
  start-page: U11.133
  year: 2017
  ident: nfad9033bib39
  contributor:
    fullname: Reynolds
– volume: 40
  start-page: 38
  year: 1978
  ident: nfad9033bib67
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.40.38
  contributor:
    fullname: Rechester
– year: 1989
  ident: nfad9033bib22
  article-title: Design of a spheromak compressor driven by high explosives
  contributor:
    fullname: Henins
– volume: 1
  start-page: 3
  year: 2005
  ident: nfad9033bib56
  publication-title: High Energy Density Phys.
  doi: 10.1016/j.hedp.2005.07.001
  contributor:
    fullname: Chung
– volume: vol 63
  start-page: NO6.012
  year: 2018
  ident: nfad9033bib42
  contributor:
    fullname: O’Shea
– volume: 3
  start-page: 134
  year: 1960
  ident: nfad9033bib5
  publication-title: Phys. Fluids
  doi: 10.1063/1.1705989
  contributor:
    fullname: Marshall
– volume: 26
  start-page: 863
  year: 1986
  ident: nfad9033bib28
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/26/7/003
  contributor:
    fullname: Kaita
– year: 1958
  ident: nfad9033bib44
  article-title: Hydromagnetic equilibria and force-free fields
  doi: 10.1016/0891-3919(58)90139-6
  contributor:
    fullname: Grad
– volume: 72
  start-page: 3666
  year: 1994
  ident: nfad9033bib10
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.72.3666
  contributor:
    fullname: Nelson
– volume: 10
  start-page: 2932
  year: 2003
  ident: nfad9033bib14
  publication-title: Phys. Plasmas
  doi: 10.1063/1.1580815
  contributor:
    fullname: Nagata
– volume: 25
  start-page: 1167
  year: 1985
  ident: nfad9033bib30
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/25/9/029
  contributor:
    fullname: Grove
– year: 2002
  ident: nfad9033bib48
  article-title: ITER technical basis, ITER EDA documentation series
  contributor:
    fullname: ITER
– volume: 54
  year: 2012
  ident: nfad9033bib43
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/0741-3335/54/11/113001
  contributor:
    fullname: Hooper
– year: 1974
  ident: nfad9033bib24
  article-title: Experiments on the adiabatic toroidal compressor
  doi: 10.2172/4203067)
  contributor:
    fullname: Bol
– year: 1980
  ident: nfad9033bib34
  article-title: Assessment of the slowly-imploding liner (linus) fusion reactor concept
  contributor:
    fullname: Miller
– volume: 34
  start-page: 245
  year: 1996
  ident: nfad9033bib64
  publication-title: Astrophys. Lett. Commun.
  contributor:
    fullname: Tóth
– start-page: pp 211
  year: 1987
  ident: nfad9033bib32
  article-title: Effects of major radius compression in JET
  publication-title: JET Joint Undertaking Progress Report 1986, EUR 11113 EN(EUR-JET-PR4)
  contributor:
    fullname: Tanga
– volume: 60
  year: 2020
  ident: nfad9033bib49
  publication-title: Nucl. Fusion
  doi: 10.1088/1741-4326/ab74a2
  contributor:
    fullname: Brennan
– volume: 2
  start-page: 3074
  year: 1990
  ident: nfad9033bib20
  publication-title: Phys. Fluids B
  doi: 10.1063/1.859218
  contributor:
    fullname: Yamada
– volume: 26
  start-page: 1965
  year: 1983
  ident: nfad9033bib46
  publication-title: Phys. Fluids
  doi: 10.1063/1.864345
  contributor:
    fullname: Turner
– year: 2011
  ident: nfad9033bib65
  contributor:
    fullname: Wesson
– volume: vol 62
  start-page: p U11.132
  year: 2017
  ident: nfad9033bib40
  contributor:
    fullname: Young
– volume: 9
  start-page: 2006
  year: 2002
  ident: nfad9033bib12
  publication-title: Phys. Plasmas
  doi: 10.1063/1.1448832
  contributor:
    fullname: Redd
– volume: 25
  start-page: 1145
  year: 1985
  ident: nfad9033bib23
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/25/9/025
  contributor:
    fullname: Ellis
– volume: 58
  start-page: 741
  year: 1986
  ident: nfad9033bib54
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.58.741
  contributor:
    fullname: Taylor
– start-page: p 2151
  year: 2014
  ident: nfad9033bib4
  article-title: Spheromak compression experiments at General Fusion
  contributor:
    fullname: Froese
– volume: 5
  start-page: 1807
  year: 1998
  ident: nfad9033bib11
  publication-title: Phys. Plasmas
  doi: 10.1063/1.872850
  contributor:
    fullname: Jarboe
– volume: 27
  start-page: 65
  year: 2008
  ident: nfad9033bib2
  publication-title: J. Fusion Energy
  doi: 10.1007/s10894-007-9091-4
  contributor:
    fullname: Laberge
– ident: nfad9033bib58
  article-title: MCNP6™ user’s manual code version 6.1.1 beta
  contributor:
    fullname: James
– volume: 53
  year: 2013
  ident: nfad9033bib16
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/53/9/093003
  contributor:
    fullname: Degnan
– volume: 42
  start-page: 30
  year: 2023
  ident: nfad9033bib18
  publication-title: J. Fusion Energy
  doi: 10.1007/s10894-023-00367-7
  contributor:
    fullname: Kirtley
– volume: 8
  start-page: 441
  year: 1985
  ident: nfad9033bib47
  publication-title: Fusion Technol.
  doi: 10.13182/FST85-A40083
  contributor:
    fullname: Luxon
– volume: 27
  start-page: 361
  year: 1995
  ident: nfad9033bib13
  publication-title: Fusion Technol.
  doi: 10.13182/FST95-A11947106
  contributor:
    fullname: Shimamura
– volume: vol 13
  year: 1999
  ident: nfad9033bib31
  article-title: The science of ‘JET’ JET-R(99)
  contributor:
    fullname: Wesson
– year: 1995
  ident: nfad9033bib71
  contributor:
    fullname: Goldston
– volume: 27
  year: 2020
  ident: nfad9033bib63
  publication-title: Phys. Plasmas
  doi: 10.1063/5.0020010
  contributor:
    fullname: Wang
– volume: vol 67
  start-page: B11.003
  year: 2022
  ident: nfad9033bib55
  contributor:
    fullname: Froese
– volume: 20
  start-page: 397
  year: 1977
  ident: nfad9033bib72
  publication-title: At. Data Nucl. Data Tables
  doi: 10.1016/0092-640X(77)90026-2
  contributor:
    fullname: Post
– volume: 8
  start-page: 363
  year: 1999
  ident: nfad9033bib33
  publication-title: Comments Plasma Phys. Control. Fusion
  contributor:
    fullname: Siemon
– volume: 31
  start-page: 112
  year: 1964
  ident: nfad9033bib57
  publication-title: Nucl. Instrum. Methods
  doi: 10.1016/0029-554X(64)90333-7
  contributor:
    fullname: Roush
– volume: 125
  year: 2020
  ident: nfad9033bib19
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.155002
  contributor:
    fullname: Gomez
– volume: 68
  start-page: 1722
  year: 1992
  ident: nfad9033bib9
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.68.1722
  contributor:
    fullname: Browning
– volume: 82
  start-page: 2681
  year: 1999
  ident: nfad9033bib17
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.82.2681
  contributor:
    fullname: Degnan
– volume: vol 1
  start-page: pp 141
  year: 1985
  ident: nfad9033bib29
  article-title: Adiabatic toroidal compression and free-expansion experiments in TFTR
  contributor:
    fullname: Tait
– year: 1995
  ident: nfad9033bib69
  article-title: Final report on the LLNL compact torus acceleration project
  doi: 10.2172/110784
  contributor:
    fullname: Eddleman
– year: 1997
  ident: nfad9033bib70
  article-title: CORSICA: a comprehensive simulation of toroidal magnetic-fusion devices. Final report to the LDRD Program
  doi: 10.1088/0741-3335/54/11/113001)
  contributor:
    fullname: Crotinger
– volume: vol 61
  start-page: p C10.104
  year: 2016
  ident: nfad9033bib35
  contributor:
    fullname: Howard
– volume: 72
  start-page: 552
  year: 2001
  ident: nfad9033bib15
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1310589
  contributor:
    fullname: Wurden
– volume: 4
  start-page: 224
  year: 2001
  ident: nfad9033bib26
  publication-title: J. Plasma Fusion Res. Ser.
  contributor:
    fullname: Askinazi
– volume: 29
  start-page: 1495
  year: 1972
  ident: nfad9033bib25
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.29.1495
  contributor:
    fullname: Bol
– volume: 13
  start-page: 2593
  year: 1970
  ident: nfad9033bib45
  publication-title: Phys. Fluids
  doi: 10.1063/1.1692832
  contributor:
    fullname: Furth
– volume: 23
  year: 2016
  ident: nfad9033bib62
  publication-title: Phys. Plasmas
  doi: 10.1063/1.4967862
  contributor:
    fullname: Glasser
– year: 2023
  ident: nfad9033bib61
  article-title: NRL plasma formulary
  contributor:
    fullname: Beresnyak
– volume: 65
  start-page: 721
  year: 1990
  ident: nfad9033bib8
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.65.721
  contributor:
    fullname: Yamada
– volume: 27
  year: 2020
  ident: nfad9033bib21
  publication-title: Phys. Plasmas
  doi: 10.1063/1.5126148
  contributor:
    fullname: Dunlea
– volume: 91
  year: 2003
  ident: nfad9033bib68
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.91.045004
  contributor:
    fullname: Biewer
– volume: 56
  year: 2014
  ident: nfad9033bib7
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/0741-3335/56/10/103001
  contributor:
    fullname: Raman
– volume: 61
  year: 2021
  ident: nfad9033bib50
  publication-title: Nucl. Fusion
  doi: 10.1088/1741-4326/abe68c
  contributor:
    fullname: Brennan
– volume: vol 62
  start-page: p U11.136
  year: 2017
  ident: nfad9033bib38
  contributor:
    fullname: Laberge
– volume: vol 63
  start-page: p C11.189
  year: 2018
  ident: nfad9033bib41
  contributor:
    fullname: Howard
– volume: 26
  start-page: 87
  year: 1984
  ident: nfad9033bib66
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/0741-3335/26/1A/308
  contributor:
    fullname: Goldston
– volume: vol 61
  start-page: p C10.103
  year: 2016
  ident: nfad9033bib37
  contributor:
    fullname: O’Shea
– volume: 26
  start-page: 403
  year: 1979
  ident: nfad9033bib60
  publication-title: Nav. Res. Logist. Q.
  doi: 10.1002/nav.3800260304
  contributor:
    fullname: Lewis
– volume: 27
  start-page: 201
  year: 1995
  ident: nfad9033bib1
  publication-title: Fusion Technol.
  doi: 10.13182/FST95-A30382
  contributor:
    fullname: Kirkpatrick
SSID ssj0014133
Score 2.475658
Snippet A sequence of magnetized target fusion devices built by General Fusion has compressed magnetically confined deuterium plasmas inside imploding aluminum liners....
SourceID crossref
SourceType Aggregation Database
StartPage 16029
Title Measurement of spherical tokamak plasma compression in a PCS-16 magnetized target fusion experiment
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBabhEIvpU1amr7QIZewaOO1Zck-hnRDCCQEsofQi9FKclnStcM-Du2v70hjy05CIDnkYoyQh7Xn29Fo5tMMIQd5FktX_paVXAjGZaqZmpWAZXCWrYTdtvLNYM6u5eVN9nPCJ4NBSyTtxl5V0zAGunYnZ1-g7SAUBuAedA5X0Dpcn6X3iy7o5xzBlSsb4BWxrm_VQt26vtGrhfJccuTAeq6jGl6dXLOxGC7U78qu5__AEUWW-LDc-EldL4C-Q3vp6iGrZTMpgMSTcX1kdXQ-Ckkd-7eq_xiMb4fR02VtsbvjcRj7NXe1H5D6PeoHJuK0F5hoDwrkDBwyTFpbtK_gwDCe4CH51gBjs4h7QENrOhYRhkMe2XmwjS7k0EpzC5rJIyypcb-o9oPFLlAQffI9ywono3AyCpSwRXYAvUnYnTcJKVjrk5Yt5N6pyXiDhKPwK45QQs_D6bkq0_fkXbPHoMcIjg9kYKtd8sZzffVqj-geRGhd0gAR2kCEIkRoDyJ0XlFFESK0gwhFiFDUPu0g8pFMTyfTkzPW9NpgOksSlmuhVR5peBcb21SClda5gNVMlONScBsp2BlYcL7TxFcgTEspjIyFAe_WSKWTT2S7qiv7mVDJY2W4TPJM59xoNYNnZnoM_3yutYnKfXLYfp7iDiuqFE8p48sL5n4lbzsUfiPb6-XGfidbK7P54VX5H18hZpI
link.rule.ids 315,782,786,866,27933,27934
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measurement+of+spherical+tokamak+plasma+compression+in+a+PCS-16+magnetized+target+fusion+experiment&rft.jtitle=Nuclear+fusion&rft.au=Howard%2C+S.J.&rft.au=Reynolds%2C+M.&rft.au=Froese%2C+A.&rft.au=Zindler%2C+R.&rft.date=2025-01-01&rft.issn=0029-5515&rft.eissn=1741-4326&rft.volume=65&rft.issue=1&rft.spage=16029&rft_id=info:doi/10.1088%2F1741-4326%2Fad9033&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1741_4326_ad9033
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5515&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5515&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5515&client=summon