Bacterial Proliferation: Keep Dividing and Don't Mind the Gap
DNA Damage Tolerance (DDT) mechanisms help dealing with unrepaired DNA lesions that block replication and challenge genome integrity. Previous in vitro studies showed that the bacterial replicase is able to re-prime downstream of a DNA lesion, leaving behind a single-stranded DNA gap. The question r...
Saved in:
Published in: | PLoS genetics Vol. 11; no. 12; p. e1005757 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Public Library of Science
01-12-2015
Public Library of Science (PLoS) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | DNA Damage Tolerance (DDT) mechanisms help dealing with unrepaired DNA lesions that block replication and challenge genome integrity. Previous in vitro studies showed that the bacterial replicase is able to re-prime downstream of a DNA lesion, leaving behind a single-stranded DNA gap. The question remains of what happens to this gap in vivo. Following the insertion of a single lesion in the chromosome of a living cell, we showed that this gap is mostly filled in by Homology Directed Gap Repair in a RecA dependent manner. When cells fail to repair this gap, or when homologous recombination is impaired, cells are still able to divide, leading to the loss of the damaged chromatid, suggesting that bacteria lack a stringent cell division checkpoint mechanism. Hence, at the expense of losing one chromatid, cell survival and proliferation are ensured. |
---|---|
AbstractList | DNA Damage Tolerance (DDT) mechanisms help dealing with unrepaired DNA lesions that block replication and challenge genome integrity. Previous in vitro studies showed that the bacterial replicase is able to re-prime downstream of a DNA lesion, leaving behind a single-stranded DNA gap. The question remains of what happens to this gap in vivo. Following the insertion of a single lesion in the chromosome of a living cell, we showed that this gap is mostly filled in by Homology Directed Gap Repair in a RecA dependent manner. When cells fail to repair this gap, or when homologous recombination is impaired, cells are still able to divide, leading to the loss of the damaged chromatid, suggesting that bacteria lack a stringent cell division checkpoint mechanism. Hence, at the expense of losing one chromatid, cell survival and proliferation are ensured. Author Summary DNA Damage Tolerance (DDT) mechanisms help dealing with unrepaired DNA lesions that block replication, thus challenging genome integrity. Two DDT mechanisms have previously been described: error prone Translesion Synthesis operated by specialized DNA polymerases and error free bypass that uses the information of the sister chromatid to bypass the lesion. In this work, we set up a novel genetic system that allows to insert a single DNA blocking lesion in the chromosome of a living cell and to visualize the exchange of genetic information between the undamaged and the damaged strand. Using this system, we showed in vivo that the replication fork is able to re-prime downstream of the lesion, leaving a gap. This gap is mostly filled in by the error free pathway through the RecA homologous recombination mechanism. We show that when the gap is left unre-paired, cells are still able to divide by losing the damaged chromatid, which evidences the lack of a stringent cell division checkpoint system. DNA Damage Tolerance (DDT) mechanisms help dealing with unrepaired DNA lesions that block replication and challenge genome integrity. Previous in vitro studies showed that the bacterial replicase is able to re-prime downstream of a DNA lesion, leaving behind a single-stranded DNA gap. The question remains of what happens to this gap in vivo . Following the insertion of a single lesion in the chromosome of a living cell, we showed that this gap is mostly filled in by Homology Directed Gap Repair in a RecA dependent manner. When cells fail to repair this gap, or when homologous recombination is impaired, cells are still able to divide, leading to the loss of the damaged chromatid, suggesting that bacteria lack a stringent cell division checkpoint mechanism. Hence, at the expense of losing one chromatid, cell survival and proliferation are ensured. DNA Damage Tolerance (DDT) mechanisms help dealing with unrepaired DNA lesions that block replication, thus challenging genome integrity. Two DDT mechanisms have previously been described: error prone Translesion Synthesis operated by specialized DNA polymerases and error free bypass that uses the information of the sister chromatid to bypass the lesion. In this work, we set up a novel genetic system that allows to insert a single DNA blocking lesion in the chromosome of a living cell and to visualize the exchange of genetic information between the undamaged and the damaged strand. Using this system, we showed in vivo that the replication fork is able to re-prime downstream of the lesion, leaving a gap. This gap is mostly filled in by the error free pathway through the RecA homologous recombination mechanism. We show that when the gap is left unrepaired, cells are still able to divide by losing the damaged chromatid, which evidences the lack of a stringent cell division checkpoint system. DNA Damage Tolerance (DDT) mechanisms help dealing with unrepaired DNA lesions that block replication and challenge genome integrity. Previous in vitro studies showed that the bacterial replicase is able to re-prime downstream of a DNA lesion, leaving behind a singlestranded DNA gap. The question remains of what happens to this gap in vivo. Following the insertion of a single lesion in the chromosome of a living cell, we showed that this gap is mostly filled in by Homology Directed Gap Repair in a RecA dependent manner. When cells fail to repair this gap, or when homologous recombination is impaired, cells are still able to divide, leading to the loss of the damaged chromatid, suggesting that bacteria lack a stringent cell division checkpoint mechanism. Hence, at the expense of losing one chromatid, cell survival and proliferation are ensured. DNA Damage Tolerance (DDT) mechanisms help dealing with unrepaired DNA lesions that block replication and challenge genome integrity. Previous in vitro studies showed that the bacterial replicase is able to re-prime downstream of a DNA lesion, leaving behind a single-stranded DNA gap. The question remains of what happens to this gap in vivo. Following the insertion of a single lesion in the chromosome of a living cell, we showed that this gap is mostly filled in by Homology Directed Gap Repair in a RecA dependent manner. When cells fail to repair this gap, or when homologous recombination is impaired, cells are still able to divide, leading to the loss of the damaged chromatid, suggesting that bacteria lack a stringent cell division checkpoint mechanism. Hence, at the expense of losing one chromatid, cell survival and proliferation are ensured. DNA Damage Tolerance (DDT) mechanisms help dealing with unrepaired DNA lesions that block replication and challenge genome integrity. Previous in vitro studies showed that the bacterial replicase is able to re-prime downstream of a DNA lesion, leaving behind a single-stranded DNA gap. The question remains of what happens to this gap in vivo. Following the insertion of a single lesion in the chromosome of a living cell, we showed that this gap is mostly filled in by Homology Directed Gap Repair in a RecA dependent manner. When cells fail to repair this gap, or when homologous recombination is impaired, cells are still able to divide, leading to the loss of the damaged chromatid, suggesting that bacteria lack a stringent cell division checkpoint mechanism. Hence, at the expense of losing one chromatid, cell survival and proliferation are ensured. |
Audience | Academic |
Author | Pagès, Vincent Fuchs, Robert P Laureti, Luisa Demol, Julien |
AuthorAffiliation | University of Michigan, UNITED STATES Cancer Research Center of Marseille, Team DNA Damage Tolerance, CNRS, UMR7258; Inserm, U1068; Institut Paoli-Calmettes; Aix-Marseille University, Marseille, France |
AuthorAffiliation_xml | – name: Cancer Research Center of Marseille, Team DNA Damage Tolerance, CNRS, UMR7258; Inserm, U1068; Institut Paoli-Calmettes; Aix-Marseille University, Marseille, France – name: University of Michigan, UNITED STATES |
Author_xml | – sequence: 1 givenname: Luisa surname: Laureti fullname: Laureti, Luisa organization: Cancer Research Center of Marseille, Team DNA Damage Tolerance, CNRS, UMR7258; Inserm, U1068; Institut Paoli-Calmettes; Aix-Marseille University, Marseille, France – sequence: 2 givenname: Julien surname: Demol fullname: Demol, Julien organization: Cancer Research Center of Marseille, Team DNA Damage Tolerance, CNRS, UMR7258; Inserm, U1068; Institut Paoli-Calmettes; Aix-Marseille University, Marseille, France – sequence: 3 givenname: Robert P surname: Fuchs fullname: Fuchs, Robert P organization: Cancer Research Center of Marseille, Team DNA Damage Tolerance, CNRS, UMR7258; Inserm, U1068; Institut Paoli-Calmettes; Aix-Marseille University, Marseille, France – sequence: 4 givenname: Vincent surname: Pagès fullname: Pagès, Vincent organization: Cancer Research Center of Marseille, Team DNA Damage Tolerance, CNRS, UMR7258; Inserm, U1068; Institut Paoli-Calmettes; Aix-Marseille University, Marseille, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26713761$$D View this record in MEDLINE/PubMed https://hal.science/hal-01426227$$DView record in HAL |
BookMark | eNqVk11v0zAUhiM0xD7gHyCINAnYRYsdfyVIIJUNtorCEF-3luPYiavULnZSwb_Hod3UIC5Avoh1_LzvybHPOU4OrLMqSR5CMIWIwedL13sr2um6VnYKASCMsDvJESQETRgG-GBvf5gch7AEAJG8YPeSw4yy6EHhUfLytZCd8ka06UfvWqOVF51x9kX6Tql1emE2pjK2ToWt0gtnn3bpexO3XaPSS7G-n9zVog3qwe57knx9--bL-dVkcX05P58tJpIVeTfRChKA80xRLXNKUakyBTGMEU2GE1FShvJcS0IzihAEFaqgFLGiHJOiZOgkebz1Xbcu8F3lgUNGMaIFI0Uk5luicmLJ196shP_JnTD8d8D5mgvfGdkqXhSQYAwRAFJjTCuhKlCVVBPNdMkIil6vdtn6cqUqqWznRTsyHZ9Y0_DabTimRZHj4XfPtgbNH7Kr2YIPMQBxRrOMbWBkn-2Sefe9V6HjKxOkalthleuHGknGckZIHtHTLVqLWIax2sXscsD5DMeLRCCHIFLTv1BxVWplZOwhbWJ8JDgbCSLTqR9dLfoQ-Pzzp_9gP_w7e_1tzD7ZYxsl2q4Jru2HVgxjEG9B6V0IXunb-4WAD3Nx0x18mAu-m4soe7T_pLeim0FAvwCv7QSw |
CitedBy_id | crossref_primary_10_1038_s41598_020_76426_2 crossref_primary_10_1002_em_22267 crossref_primary_10_1073_pnas_1914485116 crossref_primary_10_1093_nar_gkw1322 crossref_primary_10_1093_narcan_zcac042 crossref_primary_10_1038_s41598_020_66651_0 crossref_primary_10_1093_nar_gkx217 crossref_primary_10_1007_s00294_016_0575_5 crossref_primary_10_1093_nar_gkw488 crossref_primary_10_1093_nar_gkz723 crossref_primary_10_1093_nar_gky135 crossref_primary_10_3390_genes13030437 crossref_primary_10_1016_j_molcel_2021_01_012 crossref_primary_10_1016_j_molcel_2021_09_013 crossref_primary_10_1016_j_dnarep_2016_05_006 crossref_primary_10_1371_journal_pgen_1010238 crossref_primary_10_1051_medsci_2018194 crossref_primary_10_1093_femsle_fnx031 crossref_primary_10_1128_mmbr_00078_22 crossref_primary_10_1093_nar_gkac075 |
Cites_doi | 10.1016/0022-2836(86)90273-1 10.1073/pnas.0608293104 10.1101/gad.417607 10.4161/23723548.2014.957039 10.1016/0014-5793(85)80266-0 10.1101/gad.1780709 10.1128/MMBR.63.4.751-813.1999 10.1093/emboj/19.22.6259 10.1038/sj.emboj.7601474 10.1038/35044005 10.1128/9781555817640.ch21 10.1016/0022-2836(89)90259-3 10.1128/JB.97.3.1134-1141.1969 10.1016/j.jmb.2008.06.031 10.1038/sj.onc.1206006 10.1093/genetics/160.3.851 10.1016/0022-2836(68)90445-2 10.1128/JB.182.23.6598-6604.2000 10.1016/0092-8674(93)90493-A 10.1016/0005-2787(71)90551-X 10.1016/j.molcel.2005.11.015 10.1093/nar/gks675 10.1038/nature04329 10.1016/S0300-9084(97)82002-0 10.1038/emboj.2013.211 10.1371/journal.pgen.0030226 10.1128/JB.181.2.508-520.1999 10.1128/JB.156.3.1093-1098.1983 10.3389/fgene.2013.00026 10.1073/pnas.120163297 10.1046/j.1365-2443.2003.00646.x 10.1128/JB.187.6.1974-1984.2005 10.1016/0022-2836(76)90156-X 10.1016/j.dnarep.2009.04.014 10.1126/science.1081328 10.1128/MMBR.00020-08 10.1016/j.molcel.2013.10.020 10.1038/ncomms7357 10.1016/S0092-8674(00)80621-2 10.1073/pnas.1321008111 10.1073/pnas.59.2.598 10.1016/j.jmb.2013.07.021 10.1016/j.mrrev.2015.02.001 10.1126/science.1083964 10.1002/bies.20233 10.1016/j.dnarep.2006.07.002 10.1074/jbc.M112.397034 10.1038/nrm3935 10.1126/science.1209111 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2015 Public Library of Science Distributed under a Creative Commons Attribution 4.0 International License 2015 Laureti et al 2015 Laureti et al 2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Laureti L, Demol J, Fuchs RP, Pagès V (2015) Bacterial Proliferation: Keep Dividing and Don't Mind the Gap. PLoS Genet 11(12): e1005757. doi:10.1371/journal.pgen.1005757 |
Copyright_xml | – notice: COPYRIGHT 2015 Public Library of Science – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: 2015 Laureti et al 2015 Laureti et al – notice: 2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Laureti L, Demol J, Fuchs RP, Pagès V (2015) Bacterial Proliferation: Keep Dividing and Don't Mind the Gap. PLoS Genet 11(12): e1005757. doi:10.1371/journal.pgen.1005757 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION IOV ISN ISR 7X8 1XC VOOES 5PM DOA |
DOI | 10.1371/journal.pgen.1005757 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Opposing Viewpoints In Context Gale In Context: Canada Gale In Context: Science MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Bacterial Proliferation: Keep Dividing and Don't Mind the Gap |
EISSN | 1553-7404 |
Editor | Simmons, Lyle A. |
Editor_xml | – sequence: 1 givenname: Lyle A. surname: Simmons fullname: Simmons, Lyle A. |
EndPage | e1005757 |
ExternalDocumentID | 1764369759 oai_doaj_org_article_9915441300cf446daed0db6f5f7fb753 oai_HAL_hal_01426227v1 A451530810 10_1371_journal_pgen_1005757 26713761 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 123 29O 2WC 3V. 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ADBBV ADRAZ AEAQA AENEX AFKRA AFPKN AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS B0M BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI BWKFM C1A CCPQU CGR CS3 CUY CVF DIK DU5 E3Z EAP EAS EBD EBS ECM EIF EJD EMK EMOBN ESX F5P FPL FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO IGS IHR IHW INH INR IOV IPNFZ ISN ISR ITC KQ8 LK8 M1P M48 M7P M~E NPM O5R O5S OK1 P2P PIMPY PQQKQ PROAC PSQYO PV9 QF4 QN7 RIG RNS RPM RZL SV3 TR2 TUS UKHRP WOQ WOW XSB ~8M AAYXX CITATION 7X8 1XC VOOES 5PM AAPBV ABPTK PQEST PQUKI |
ID | FETCH-LOGICAL-c798t-fe150482e6fc8663be2e141482f51504ab67388fc56263310d3d1ca5758459b73 |
IEDL.DBID | RPM |
ISSN | 1553-7404 1553-7390 |
IngestDate | Sun Jul 02 11:04:35 EDT 2023 Tue Oct 22 15:09:15 EDT 2024 Tue Sep 17 21:25:53 EDT 2024 Tue Oct 15 15:56:13 EDT 2024 Fri Jun 28 10:02:36 EDT 2024 Tue Nov 19 21:02:54 EST 2024 Tue Nov 12 23:25:39 EST 2024 Thu Aug 01 19:25:53 EDT 2024 Thu Aug 01 19:15:53 EDT 2024 Thu Aug 01 20:37:15 EDT 2024 Tue Aug 20 22:07:48 EDT 2024 Fri Aug 23 19:59:18 EDT 2024 Sun Jun 23 00:34:13 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c798t-fe150482e6fc8663be2e141482f51504ab67388fc56263310d3d1ca5758459b73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Conceived and designed the experiments: LL VP. Performed the experiments: LL JD. Analyzed the data: LL VP. Wrote the paper: LL VP RPF. The authors have declared that no competing interests exist. |
ORCID | 0000-0002-7863-4922 0000-0002-3059-2903 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4699847/ |
PMID | 26713761 |
PQID | 1752787558 |
PQPubID | 23479 |
ParticipantIDs | plos_journals_1764369759 doaj_primary_oai_doaj_org_article_9915441300cf446daed0db6f5f7fb753 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4699847 hal_primary_oai_HAL_hal_01426227v1 proquest_miscellaneous_1752787558 gale_infotracmisc_A451530810 gale_infotracacademiconefile_A451530810 gale_incontextgauss_ISR_A451530810 gale_incontextgauss_ISN_A451530810 gale_incontextgauss_IOV_A451530810 gale_healthsolutions_A451530810 crossref_primary_10_1371_journal_pgen_1005757 pubmed_primary_26713761 |
PublicationCentury | 2000 |
PublicationDate | 2015-12-01 |
PublicationDateYYYYMMDD | 2015-12-01 |
PublicationDate_xml | – month: 12 year: 2015 text: 2015-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco, CA USA |
PublicationTitle | PLoS genetics |
PublicationTitleAlternate | PLoS Genet |
PublicationYear | 2015 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | NP Higgins (ref5) 1976; 101 N Handa (ref22) 2009; 23 BE Dutra (ref27) 2007; 104 K Morimatsu (ref35) 2012; 287 L Sandell (ref41) 1993; 75 V Pagès (ref1) 2002; 21 GA Pandya (ref12) 2000; 182 M Inuzuka (ref47) 1985; 181 S Mohebi (ref42) 2015; 6 VN Iyer (ref28) 1971; 228 TC Wang (ref36) 1983; 156 V Pagès (ref15) 2003; 300 R Napolitano (ref23) 2000; 19 L Amado (ref30) 2013; 425 RC Heller (ref32) 2006; 439 BB Zhou (ref38) 2000; 408 M Spies (ref21) 2005 T-CV Wang (ref10) 2005; 27 F Prado (ref2) 2014; 1 X Xu (ref3) 2015; 764 R Okazaki (ref29) 1968; 59 KA Datsenko (ref45) 2000; 97 K Naiman (ref18) 2014; 111 D Branzei (ref39) 2009; 8 AI Ozgenc (ref13) 2005; 187 M Lopes (ref31) 2006; 21 P Koehl (ref49) 1989; 207 CE Bauer (ref48) 1986; 192 WD Rupp (ref4) 1968; 31 J Courcelle (ref7) 2003; 299 MS Dillingham (ref20) 2008; 72 P McGlynn (ref6) 2000; 101 K Higuchi (ref16) 2003; 8 S Autret (ref37) 1997; 79 V Pagès (ref17) 2012; 40 ST Lovett (ref26) 2002; 160 CJ Rudolph (ref8) 2007; 21 KJ Neelsen (ref9) 2015; 16 HW Mankouri (ref43) 2013; 32 JTP Yeeles (ref33) 2011; 334 DS Weiss (ref46) 1999; 181 A Kuzminov (ref19) 1999; 63 L Izhar (ref14) 2008; 381 S Fujii (ref24) 2006; 25 AR Lehmann (ref11) 2006; 5 P Howard-Flanders (ref25) 1969; 97 E Esnault (ref44) 2007; 3 JTP Yeeles (ref34) 2013; 52 R Jossen (ref40) 2013; 4 |
References_xml | – volume: 192 start-page: 513 year: 1986 ident: ref48 article-title: Mutational analysis of integrase arm-type binding sites of bacteriophage lambda. Integration and excision involve distinct interactions of integrase with arm-type sites publication-title: Journal of Molecular Biology doi: 10.1016/0022-2836(86)90273-1 contributor: fullname: CE Bauer – volume: 104 start-page: 216 year: 2007 ident: ref27 article-title: RecA-independent recombination is efficient but limited by exonucleases publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0608293104 contributor: fullname: BE Dutra – volume: 21 start-page: 668 year: 2007 ident: ref8 article-title: Replication fork stalling and cell cycle arrest in UV-irradiated Escherichia coli publication-title: Genes Dev doi: 10.1101/gad.417607 contributor: fullname: CJ Rudolph – volume: 1 start-page: e957039 year: 2014 ident: ref2 article-title: Homologous recombination maintenance of genome integrity during DNA damage tolerance publication-title: Molecular & Cellular Oncology doi: 10.4161/23723548.2014.957039 contributor: fullname: F Prado – volume: 181 start-page: 236 year: 1985 ident: ref47 article-title: Plasmid-encoded initiation protein is required for activity at all three origins of plasmid R6K DNA replication in vitro publication-title: FEBS Lett doi: 10.1016/0014-5793(85)80266-0 contributor: fullname: M Inuzuka – volume: 23 start-page: 1234 year: 2009 ident: ref22 article-title: Reconstitution of initial steps of dsDNA break repair by the RecF pathway of E. coli publication-title: Genes Dev doi: 10.1101/gad.1780709 contributor: fullname: N Handa – volume: 63 start-page: 751 year: 1999 ident: ref19 article-title: Recombinational repair of DNA damage in Escherichia coli and bacteriophage lambda publication-title: Microbiol Mol Biol Rev doi: 10.1128/MMBR.63.4.751-813.1999 contributor: fullname: A Kuzminov – volume: 19 start-page: 6259 year: 2000 ident: ref23 article-title: All three SOS-inducible DNA polymerases (Pol II, Pol IV and Pol V) are involved in induced mutagenesis publication-title: EMBO J doi: 10.1093/emboj/19.22.6259 contributor: fullname: R Napolitano – volume: 25 start-page: 5754 year: 2006 ident: ref24 article-title: RecFOR proteins are essential for Pol V-mediated translesion synthesis and mutagenesis publication-title: EMBO J doi: 10.1038/sj.emboj.7601474 contributor: fullname: S Fujii – volume: 408 start-page: 433 year: 2000 ident: ref38 article-title: The DNA damage response: putting checkpoints in perspective publication-title: Nature doi: 10.1038/35044005 contributor: fullname: BB Zhou – start-page: 389 year: 2005 ident: ref21 article-title: Homologous recombination by RecBCD and RecF pathways publication-title: The bacterial chromosome doi: 10.1128/9781555817640.ch21 contributor: fullname: M Spies – volume: 207 start-page: 355 year: 1989 ident: ref49 article-title: Construction of plasmids containing a unique acetylaminofluorene adduct located within a mutation hot spot. A new probe for frameshift mutagenesis publication-title: Journal of Molecular Biology doi: 10.1016/0022-2836(89)90259-3 contributor: fullname: P Koehl – volume: 97 start-page: 1134 year: 1969 ident: ref25 article-title: Some properties of excision-defective recombination-deficient mutants of Escherichia coli K-12 publication-title: J Bacteriol doi: 10.1128/JB.97.3.1134-1141.1969 contributor: fullname: P Howard-Flanders – volume: 381 start-page: 803 year: 2008 ident: ref14 article-title: Analysis of strand transfer and template switching mechanisms of DNA gap repair by homologous recombination in Escherichia coli: predominance of strand transfer publication-title: Journal of Molecular Biology doi: 10.1016/j.jmb.2008.06.031 contributor: fullname: L Izhar – volume: 21 start-page: 8957 year: 2002 ident: ref1 article-title: How DNA lesions are turned into mutations within cells? publication-title: Oncogene doi: 10.1038/sj.onc.1206006 contributor: fullname: V Pagès – volume: 160 start-page: 851 year: 2002 ident: ref26 article-title: Crossing over between regions of limited homology in Escherichia coli. RecA-dependent and RecA-independent pathways publication-title: Genetics doi: 10.1093/genetics/160.3.851 contributor: fullname: ST Lovett – volume: 31 start-page: 291 year: 1968 ident: ref4 article-title: Discontinuities in the DNA synthesized in an excision-defective strain of Escherichia coli following ultraviolet irradiation publication-title: Journal of Molecular Biology doi: 10.1016/0022-2836(68)90445-2 contributor: fullname: WD Rupp – volume: 182 start-page: 6598 year: 2000 ident: ref12 article-title: Escherichia coli responses to a single DNA adduct publication-title: J Bacteriol doi: 10.1128/JB.182.23.6598-6604.2000 contributor: fullname: GA Pandya – volume: 75 start-page: 729 year: 1993 ident: ref41 article-title: Loss of a yeast telomere: Arrest, recovery, and chromosome loss publication-title: Cell doi: 10.1016/0092-8674(93)90493-A contributor: fullname: L Sandell – volume: 228 start-page: 117 year: 1971 ident: ref28 article-title: Usefulness of benzoylated naphthoylated DEAE-cellulose to distinguish and fractionate double-stranded DNA bearing different extents of single-stranded regions publication-title: Biochim Biophys Acta doi: 10.1016/0005-2787(71)90551-X contributor: fullname: VN Iyer – volume: 21 start-page: 15 year: 2006 ident: ref31 article-title: Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions publication-title: Molecular Cell doi: 10.1016/j.molcel.2005.11.015 contributor: fullname: M Lopes – volume: 40 start-page: 9036 year: 2012 ident: ref17 article-title: Monitoring bypass of single replication-blocking lesions by damage avoidance in the Escherichia coli chromosome publication-title: Nucleic Acids Research doi: 10.1093/nar/gks675 contributor: fullname: V Pagès – volume: 439 start-page: 557 year: 2006 ident: ref32 article-title: Replication fork reactivation downstream of a blocked nascent leading strand publication-title: Nature doi: 10.1038/nature04329 contributor: fullname: RC Heller – volume: 79 start-page: 549 year: 1997 ident: ref37 article-title: Cell cycle checkpoints in bacteria publication-title: Biochimie doi: 10.1016/S0300-9084(97)82002-0 contributor: fullname: S Autret – volume: 32 start-page: 2661 year: 2013 ident: ref43 article-title: How unfinished business from S-phase affects mitosis and beyond publication-title: EMBO J doi: 10.1038/emboj.2013.211 contributor: fullname: HW Mankouri – volume: 3 start-page: e226 year: 2007 ident: ref44 article-title: Chromosome structuring limits genome plasticity in Escherichia coli publication-title: PLoS Genet doi: 10.1371/journal.pgen.0030226 contributor: fullname: E Esnault – volume: 181 start-page: 508 year: 1999 ident: ref46 article-title: Localization of FtsI (PBP3) to the septal ring requires its membrane anchor, the Z ring, FtsA, FtsQ, and FtsL publication-title: J Bacteriol doi: 10.1128/JB.181.2.508-520.1999 contributor: fullname: DS Weiss – volume: 156 start-page: 1093 year: 1983 ident: ref36 article-title: Mechanisms for recF-dependent and recB-dependent pathways of postreplication repair in UV-irradiated Escherichia coli uvrB publication-title: J Bacteriol doi: 10.1128/JB.156.3.1093-1098.1983 contributor: fullname: TC Wang – volume: 4 start-page: 26 year: 2013 ident: ref40 article-title: . The DNA damage checkpoint response to replication stress: A Game of Forks publication-title: Front Genet doi: 10.3389/fgene.2013.00026 contributor: fullname: R Jossen – volume: 97 start-page: 6640 year: 2000 ident: ref45 article-title: One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.120163297 contributor: fullname: KA Datsenko – volume: 8 start-page: 437 year: 2003 ident: ref16 article-title: Fate of DNA replication fork encountering a single DNA lesion during oriC plasmid DNA replication in vitro publication-title: Genes Cells doi: 10.1046/j.1365-2443.2003.00646.x contributor: fullname: K Higuchi – volume: 187 start-page: 1974 year: 2005 ident: ref13 article-title: In vivo evidence for a recA-independent recombination process in Escherichia coli that permits completion of replication of DNA containing UV damage in both strands publication-title: J Bacteriol doi: 10.1128/JB.187.6.1974-1984.2005 contributor: fullname: AI Ozgenc – volume: 101 start-page: 417 year: 1976 ident: ref5 article-title: A model for replication repair in mammalian cells publication-title: Journal of Molecular Biology doi: 10.1016/0022-2836(76)90156-X contributor: fullname: NP Higgins – volume: 8 start-page: 1038 year: 2009 ident: ref39 article-title: The checkpoint response to replication stress publication-title: DNA Repair doi: 10.1016/j.dnarep.2009.04.014 contributor: fullname: D Branzei – volume: 299 start-page: 1064 year: 2003 ident: ref7 article-title: DNA damage-induced replication fork regression and processing in Escherichia coli publication-title: Science doi: 10.1126/science.1081328 contributor: fullname: J Courcelle – volume: 72 start-page: 642 year: 2008 ident: ref20 article-title: RecBCD enzyme and the repair of double-stranded DNA breaks publication-title: Microbiol Mol Biol Rev doi: 10.1128/MMBR.00020-08 contributor: fullname: MS Dillingham – volume: 52 start-page: 855 year: 2013 ident: ref34 article-title: Dynamics of leading-strand lesion skipping by the replisome publication-title: Molecular Cell doi: 10.1016/j.molcel.2013.10.020 contributor: fullname: JTP Yeeles – volume: 6 start-page: 6357 year: 2015 ident: ref42 article-title: Checkpoints are blind to replication restart and recombination intermediates that result in gross chromosomal rearrangements publication-title: Nat Commun doi: 10.1038/ncomms7357 contributor: fullname: S Mohebi – volume: 101 start-page: 35 year: 2000 ident: ref6 article-title: Modulation of RNA polymerase by (p)ppGpp reveals a RecG-dependent mechanism for replication fork progression publication-title: Cell doi: 10.1016/S0092-8674(00)80621-2 contributor: fullname: P McGlynn – volume: 111 start-page: 5526 year: 2014 ident: ref18 article-title: Chronology in lesion tolerance gives priority to genetic variability publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1321008111 contributor: fullname: K Naiman – volume: 59 start-page: 598 year: 1968 ident: ref29 article-title: Mechanism of DNA chain growth. I. Possible discontinuity and unusual secondary structure of newly synthesized chains publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.59.2.598 contributor: fullname: R Okazaki – volume: 425 start-page: 4177 year: 2013 ident: ref30 article-title: Low-molecular-weight DNA replication intermediates in Escherichia coli: mechanism of formation and strand specificity publication-title: Journal of Molecular Biology doi: 10.1016/j.jmb.2013.07.021 contributor: fullname: L Amado – volume: 764 start-page: 43 year: 2015 ident: ref3 article-title: Error-free DNA-damage tolerance in Saccharomyces cerevisiae publication-title: Mutat Res Rev Mutat Res doi: 10.1016/j.mrrev.2015.02.001 contributor: fullname: X Xu – volume: 300 start-page: 1300 year: 2003 ident: ref15 article-title: Uncoupling of leading- and lagging-strand DNA replication during lesion bypass in vivo publication-title: Science doi: 10.1126/science.1083964 contributor: fullname: V Pagès – volume: 27 start-page: 633 year: 2005 ident: ref10 article-title: Discontinuous or semi-discontinuous DNA replication in Escherichia coli? publication-title: Bioessays doi: 10.1002/bies.20233 contributor: fullname: T-CV Wang – volume: 5 start-page: 1495 year: 2006 ident: ref11 article-title: Gaps and forks in DNA replication: Rediscovering old models publication-title: DNA Repair doi: 10.1016/j.dnarep.2006.07.002 contributor: fullname: AR Lehmann – volume: 287 start-page: 35621 year: 2012 ident: ref35 article-title: RecFOR proteins target RecA protein to a DNA gap with either DNA or RNA at the 5' terminus: implication for repair of stalled replication forks publication-title: J Biol Chem doi: 10.1074/jbc.M112.397034 contributor: fullname: K Morimatsu – volume: 16 start-page: 207 year: 2015 ident: ref9 article-title: Replication fork reversal in eukaryotes: from dead end to dynamic response publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm3935 contributor: fullname: KJ Neelsen – volume: 334 start-page: 235 year: 2011 ident: ref33 article-title: The Escherichia coli replisome is inherently DNA damage tolerant publication-title: Science doi: 10.1126/science.1209111 contributor: fullname: JTP Yeeles |
SSID | ssj0035897 |
Score | 2.341922 |
Snippet | DNA Damage Tolerance (DDT) mechanisms help dealing with unrepaired DNA lesions that block replication and challenge genome integrity. Previous in vitro studies... DNA Damage Tolerance (DDT) mechanisms help dealing with unrepaired DNA lesions that block replication and challenge genome integrity. Previous in vitro studies... DNA Damage Tolerance (DDT) mechanisms help dealing with unrepaired DNA lesions that block replication and challenge genome integrity. Previous in vitro... |
SourceID | plos doaj pubmedcentral hal proquest gale crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | e1005757 |
SubjectTerms | Biochemistry, Molecular Biology Cell Division Cell proliferation Chromosomes DNA Breaks, Single-Stranded DNA Damage DNA repair DNA sequencing Escherichia coli - genetics Escherichia coli - physiology Escherichia coli Proteins - genetics Escherichia coli Proteins - metabolism Life Sciences Methods Molecular biology Nucleotide sequencing Observations Plasmids Rec A Recombinases - genetics Rec A Recombinases - metabolism Recombinational DNA Repair |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9RAEF7sgeCL-LuxVaMIfYpNdrPZjeDD1Ws9UatYFd-WZHfiCSUJ5k7wv3cmmwuNCPbB12RIst_sj2_IzDeMPY2BZ5DFECWcQ5SWTkSFsjqSonS2FI4roD-6yzN1-lUvjkkmZ2z1RTlhXh7YA3eI_IXaZIk4thWGLq4AF1PpmKxUVSLX7nffONsGU34PFlL7tipSikhhWD8UzQmVHA4-etaigyhHAPmKmhxKvXb_uEPvrChBctaeN93fSOifuZQXDqeTG-z6wCrDuR_NTXYF6lvsqu8z-es2e3HkNZnR5AN16anA-_15-AagDRdUkoVHWFjULlw09cE6fIeheojcMHxVtHfY55PjTy-X0dA3IbIq1-uoAmR5qeaQVVYjoyiBQ5KS4Gcl6U5RUqtPXVlJUjTI75xwiS0QCJ3KvFTiLpvVTQ27LIQ0xwiwdGVS2lRbDK-gipHTAWjhcpcFLNoCZ1ovj2H6f2QKwwo_dkNAmwHogB0RuqMtiVv3F9DlZnC5-ZfLA_aIfGN8pei4RM08xeEJ5DhxwJ70FiRwUVMGzbdi03Xm9fsvlzA6O72M0ceJ0cFgVDU4CWwxlDYghqSuNbHcn1jiWrbTt60IsQvoLOdvDV3DUJZnnKufScB2aTZu8e1MopBWZrmSecAeb2eooUdTAl0NzYZsJMe9WUodsHt-xo6v4ZlCh2X4YDWZy5PvmN6pv696KfI0w3A9Vff_h1v32DVko9LnCu2z2frHBh6wnc5tHvaL-ze4YE06 priority: 102 providerName: Directory of Open Access Journals |
Title | Bacterial Proliferation: Keep Dividing and Don't Mind the Gap |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26713761 https://search.proquest.com/docview/1752787558 https://hal.science/hal-01426227 https://pubmed.ncbi.nlm.nih.gov/PMC4699847 https://doaj.org/article/9915441300cf446daed0db6f5f7fb753 http://dx.doi.org/10.1371/journal.pgen.1005757 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6RSEhcEO8aSjAIqScn9trrXVfikDYtqUpLRQFxW3kfbiq1ttUklfj3zHjtqEYcKq72JM7OY_f74nkQ8jG0NLVpaIOIUhskysRBzrUIWKyMVrGh3OIb3fk5P_0lZgfYJod1tTBN0r5Wl-Py6npcXi6a3Mr6Wk-6PLHJ2ck-ULoMdtXJgAwAG3YU3W2_MRNuogpjccCB0bf1cjGPJq15xjXYBtMDAKrgED6aAlPjadQ7mpoO_pt9erDANMlhfVUt_wVF_86ovHNEHT4hj1ts6U_dGp6SB7Z8Rh66aZO_n5NPe64zM4ic4ayewjrr7_rH1tb-DAuz4CDz89L4s6rcWfknQNh9QIj-57x-QX4cHnzfnwft9IRA80ysgsIC1ksEtWmhBeAKZamNEmz7WTC8kysc-CkKzbAhDaA8E5tI56ATkbBM8fglGZZVabeIbxNQd6iMipROhAaSZYsQkJ21IjaZST0SdIqTtWuSIZs3ZRzIhVu7RJ3LVuce2UPtbmSxxXVzobq5kK2hJQBXnI8Wh6EugLOa3JoQawZZwQsFJMsj79A20tWLbgJVThNYXgxIJ_TIh0YC21yUmEdzka-XS3n09ec9hM5P7yP0rSe00woVFTiBztsCB9Ah9tjqSW73JCGidf9pC9TYHe3Mp18kXgNCS1NK-W3kkS30xk6_SxlxAJdpxlnmkfedh0r8akyjK221RhlGYYdmTHjklfPYzWO6KPAI7_ly73f070B8Ng3J23h8_d-ffEMeARBlLk1omwxXN2v7lgyWZj0CmnN0PGr-Khk1gf4HVBlPpw |
link.rule.ids | 230,315,729,782,786,866,887,2106,27933,27934,53800,53802 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6RIAQX3lBDoQYh9eTEXnu9NhKHtGlJ1SRUtCBuK-_DTaXWtpoEiX_PjNeOasSh6tX7Oc7OzI6_kedByCff0NjEvvECSo0XSR16GVeJx0KplQw15Qa_6E5O-fxXMj7ANjmsrYWpk_aVvBgUl1eD4mJR51ZWV2rY5okNT2b7ENKl4FWHPXIfzqvvt0G6dcAhS-xMFcZCj0NM31TMhTwYNgoaVKAdTBAAsoJj-GgMsRqPg87Lqe7hv_HUvQUmSvary3L5PzL6b07ljZfU4ZM7bu8pedywUndkl5-Re6Z4Th7YOZV_XpAve7anM0BOcMpPbqzdfHaPjancMZZ0wSvQzQrtjstid-XOINR3gVu6X7PqJflxeHC2P_GauQue4mmy8nIDLDFKqIlzlQAjkYaaIMKGoTnDlUziqNAkVwxb2QA_1KEOVAayTCKWSh6-Iv2iLMwWcU0EO_GlloFUUaIgPDO5D5zQmCTUqY4d4rUCF5VtryHqb2wcwhK7d4G6Eo2uHLKHWtlgsTl2faG8PheNDAVQXpysFvq-yiHa1ZnRPlYbspznEsIzh-ygToWtNN0ccTGKYHshcCTfIR9rBDbIKDAD5zxbL5fi6NvPW4BO57cBfe-AdhtQXoLxqKwpjQAZYneuDnK7gwRfoLpPW6DEbkhnMpoKvAahMI0p5b8Dh2yhFbfyXYqAAy2NU85Sh3xoLVvgT2MCXmHKNWIYBd_OWOKQ19bSN49pT49DeOcMdP5HdwVMv25l3pj6mzvfuUMeTs5mUzE9mh-_JY-AzjKbbLRN-qvrtXlHeku9fl87iL8dqGNQ |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF6RIBAX3lBDoQYh9eTE3vV6bSQOadOQqm2IKEXcVvY-mkqtbTUJEv-eGT-iGnGo4Gp_jrMzs7PfyPMg5INvaGQi33gBpcYLM828VKjY4yzTKmOaCoNfdKenYvYjHh9gm5zNqK8qaV9lF4P88mqQXyyq3MrySg3bPLHh_GQfQroEvOqw1HbYI3dhz_q0DdRrJ8x4XM9V4Zx5AuL6pmqOiWDYKGlQgoYwSQAIC47ioxHEayIKOgdU1cd_4617C0yW7JeXxfJvhPTPvMobB9Xk0X8s8TF52LBTd1RDnpA7Jn9K7tXzKn89I5_26t7OAJnjtB9ravv56B4ZU7pjLO2Co9BNc-2Oi3x35Z5AyO8Cx3Q_p-VzcjY5-LY_9Zr5C54SSbzyrAG2GMbURFbFwEwyQ00QYuNQy_FOmuHI0Ngqji1tgCdqpgOVgjzjkCeZYC9IPy9ys0VcE8Jq_ExnQabCWEGYZqwP3NCYmOlERw7xWqHLsm6zIatvbQLCk3rtEvUlG305ZA81s8Fik-zqQnF9Lhs5SqC-OGGN-b6yEPXq1Ggfqw65FTaDMM0hO6hXWVecbra6HIWwPAZcyXfI-wqBjTJyzMQ5T9fLpTz88v0WoNPZbUBfO6DdBmQLMCCVNiUSIEPs0tVBbneQ4BNU920LlNgN6UxHxxKvQUhMI0rFz8AhW2jJrXyXMhBAT6NE8MQh71rrlvjTmIiXm2KNGE7Bx3MeO-Rlbe2b17Q7yCGisw86_6N7B8y_amnemPurf35yh9yfjyfy-HB29Jo8AFbL65yjbdJfXa_NG9Jb6vXbykf8BlY6ZdA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bacterial+Proliferation%3A+Keep+Dividing+and+Don%27t+Mind+the+Gap&rft.jtitle=PLoS+genetics&rft.au=Laureti%2C+Luisa&rft.au=Demol%2C+Julien&rft.au=Fuchs%2C+Robert+P&rft.au=Pag%C3%A8s%2C+Vincent&rft.date=2015-12-01&rft.eissn=1553-7404&rft.volume=11&rft.issue=12&rft.spage=e1005757&rft.epage=e1005757&rft_id=info:doi/10.1371%2Fjournal.pgen.1005757&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7404&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7404&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7404&client=summon |