Bacterial Proliferation: Keep Dividing and Don't Mind the Gap

DNA Damage Tolerance (DDT) mechanisms help dealing with unrepaired DNA lesions that block replication and challenge genome integrity. Previous in vitro studies showed that the bacterial replicase is able to re-prime downstream of a DNA lesion, leaving behind a single-stranded DNA gap. The question r...

Full description

Saved in:
Bibliographic Details
Published in:PLoS genetics Vol. 11; no. 12; p. e1005757
Main Authors: Laureti, Luisa, Demol, Julien, Fuchs, Robert P, Pagès, Vincent
Format: Journal Article
Language:English
Published: United States Public Library of Science 01-12-2015
Public Library of Science (PLoS)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract DNA Damage Tolerance (DDT) mechanisms help dealing with unrepaired DNA lesions that block replication and challenge genome integrity. Previous in vitro studies showed that the bacterial replicase is able to re-prime downstream of a DNA lesion, leaving behind a single-stranded DNA gap. The question remains of what happens to this gap in vivo. Following the insertion of a single lesion in the chromosome of a living cell, we showed that this gap is mostly filled in by Homology Directed Gap Repair in a RecA dependent manner. When cells fail to repair this gap, or when homologous recombination is impaired, cells are still able to divide, leading to the loss of the damaged chromatid, suggesting that bacteria lack a stringent cell division checkpoint mechanism. Hence, at the expense of losing one chromatid, cell survival and proliferation are ensured.
AbstractList DNA Damage Tolerance (DDT) mechanisms help dealing with unrepaired DNA lesions that block replication and challenge genome integrity. Previous in vitro studies showed that the bacterial replicase is able to re-prime downstream of a DNA lesion, leaving behind a single-stranded DNA gap. The question remains of what happens to this gap in vivo. Following the insertion of a single lesion in the chromosome of a living cell, we showed that this gap is mostly filled in by Homology Directed Gap Repair in a RecA dependent manner. When cells fail to repair this gap, or when homologous recombination is impaired, cells are still able to divide, leading to the loss of the damaged chromatid, suggesting that bacteria lack a stringent cell division checkpoint mechanism. Hence, at the expense of losing one chromatid, cell survival and proliferation are ensured. Author Summary DNA Damage Tolerance (DDT) mechanisms help dealing with unrepaired DNA lesions that block replication, thus challenging genome integrity. Two DDT mechanisms have previously been described: error prone Translesion Synthesis operated by specialized DNA polymerases and error free bypass that uses the information of the sister chromatid to bypass the lesion. In this work, we set up a novel genetic system that allows to insert a single DNA blocking lesion in the chromosome of a living cell and to visualize the exchange of genetic information between the undamaged and the damaged strand. Using this system, we showed in vivo that the replication fork is able to re-prime downstream of the lesion, leaving a gap. This gap is mostly filled in by the error free pathway through the RecA homologous recombination mechanism. We show that when the gap is left unre-paired, cells are still able to divide by losing the damaged chromatid, which evidences the lack of a stringent cell division checkpoint system.
DNA Damage Tolerance (DDT) mechanisms help dealing with unrepaired DNA lesions that block replication and challenge genome integrity. Previous in vitro studies showed that the bacterial replicase is able to re-prime downstream of a DNA lesion, leaving behind a single-stranded DNA gap. The question remains of what happens to this gap in vivo . Following the insertion of a single lesion in the chromosome of a living cell, we showed that this gap is mostly filled in by Homology Directed Gap Repair in a RecA dependent manner. When cells fail to repair this gap, or when homologous recombination is impaired, cells are still able to divide, leading to the loss of the damaged chromatid, suggesting that bacteria lack a stringent cell division checkpoint mechanism. Hence, at the expense of losing one chromatid, cell survival and proliferation are ensured. DNA Damage Tolerance (DDT) mechanisms help dealing with unrepaired DNA lesions that block replication, thus challenging genome integrity. Two DDT mechanisms have previously been described: error prone Translesion Synthesis operated by specialized DNA polymerases and error free bypass that uses the information of the sister chromatid to bypass the lesion. In this work, we set up a novel genetic system that allows to insert a single DNA blocking lesion in the chromosome of a living cell and to visualize the exchange of genetic information between the undamaged and the damaged strand. Using this system, we showed in vivo that the replication fork is able to re-prime downstream of the lesion, leaving a gap. This gap is mostly filled in by the error free pathway through the RecA homologous recombination mechanism. We show that when the gap is left unrepaired, cells are still able to divide by losing the damaged chromatid, which evidences the lack of a stringent cell division checkpoint system.
DNA Damage Tolerance (DDT) mechanisms help dealing with unrepaired DNA lesions that block replication and challenge genome integrity. Previous in vitro studies showed that the bacterial replicase is able to re-prime downstream of a DNA lesion, leaving behind a singlestranded DNA gap. The question remains of what happens to this gap in vivo. Following the insertion of a single lesion in the chromosome of a living cell, we showed that this gap is mostly filled in by Homology Directed Gap Repair in a RecA dependent manner. When cells fail to repair this gap, or when homologous recombination is impaired, cells are still able to divide, leading to the loss of the damaged chromatid, suggesting that bacteria lack a stringent cell division checkpoint mechanism. Hence, at the expense of losing one chromatid, cell survival and proliferation are ensured.
DNA Damage Tolerance (DDT) mechanisms help dealing with unrepaired DNA lesions that block replication and challenge genome integrity. Previous in vitro studies showed that the bacterial replicase is able to re-prime downstream of a DNA lesion, leaving behind a single-stranded DNA gap. The question remains of what happens to this gap in vivo. Following the insertion of a single lesion in the chromosome of a living cell, we showed that this gap is mostly filled in by Homology Directed Gap Repair in a RecA dependent manner. When cells fail to repair this gap, or when homologous recombination is impaired, cells are still able to divide, leading to the loss of the damaged chromatid, suggesting that bacteria lack a stringent cell division checkpoint mechanism. Hence, at the expense of losing one chromatid, cell survival and proliferation are ensured.
  DNA Damage Tolerance (DDT) mechanisms help dealing with unrepaired DNA lesions that block replication and challenge genome integrity. Previous in vitro studies showed that the bacterial replicase is able to re-prime downstream of a DNA lesion, leaving behind a single-stranded DNA gap. The question remains of what happens to this gap in vivo. Following the insertion of a single lesion in the chromosome of a living cell, we showed that this gap is mostly filled in by Homology Directed Gap Repair in a RecA dependent manner. When cells fail to repair this gap, or when homologous recombination is impaired, cells are still able to divide, leading to the loss of the damaged chromatid, suggesting that bacteria lack a stringent cell division checkpoint mechanism. Hence, at the expense of losing one chromatid, cell survival and proliferation are ensured.
Audience Academic
Author Pagès, Vincent
Fuchs, Robert P
Laureti, Luisa
Demol, Julien
AuthorAffiliation University of Michigan, UNITED STATES
Cancer Research Center of Marseille, Team DNA Damage Tolerance, CNRS, UMR7258; Inserm, U1068; Institut Paoli-Calmettes; Aix-Marseille University, Marseille, France
AuthorAffiliation_xml – name: Cancer Research Center of Marseille, Team DNA Damage Tolerance, CNRS, UMR7258; Inserm, U1068; Institut Paoli-Calmettes; Aix-Marseille University, Marseille, France
– name: University of Michigan, UNITED STATES
Author_xml – sequence: 1
  givenname: Luisa
  surname: Laureti
  fullname: Laureti, Luisa
  organization: Cancer Research Center of Marseille, Team DNA Damage Tolerance, CNRS, UMR7258; Inserm, U1068; Institut Paoli-Calmettes; Aix-Marseille University, Marseille, France
– sequence: 2
  givenname: Julien
  surname: Demol
  fullname: Demol, Julien
  organization: Cancer Research Center of Marseille, Team DNA Damage Tolerance, CNRS, UMR7258; Inserm, U1068; Institut Paoli-Calmettes; Aix-Marseille University, Marseille, France
– sequence: 3
  givenname: Robert P
  surname: Fuchs
  fullname: Fuchs, Robert P
  organization: Cancer Research Center of Marseille, Team DNA Damage Tolerance, CNRS, UMR7258; Inserm, U1068; Institut Paoli-Calmettes; Aix-Marseille University, Marseille, France
– sequence: 4
  givenname: Vincent
  surname: Pagès
  fullname: Pagès, Vincent
  organization: Cancer Research Center of Marseille, Team DNA Damage Tolerance, CNRS, UMR7258; Inserm, U1068; Institut Paoli-Calmettes; Aix-Marseille University, Marseille, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26713761$$D View this record in MEDLINE/PubMed
https://hal.science/hal-01426227$$DView record in HAL
BookMark eNqVk11v0zAUhiM0xD7gHyCINAnYRYsdfyVIIJUNtorCEF-3luPYiavULnZSwb_Hod3UIC5Avoh1_LzvybHPOU4OrLMqSR5CMIWIwedL13sr2um6VnYKASCMsDvJESQETRgG-GBvf5gch7AEAJG8YPeSw4yy6EHhUfLytZCd8ka06UfvWqOVF51x9kX6Tql1emE2pjK2ToWt0gtnn3bpexO3XaPSS7G-n9zVog3qwe57knx9--bL-dVkcX05P58tJpIVeTfRChKA80xRLXNKUakyBTGMEU2GE1FShvJcS0IzihAEFaqgFLGiHJOiZOgkebz1Xbcu8F3lgUNGMaIFI0Uk5luicmLJ196shP_JnTD8d8D5mgvfGdkqXhSQYAwRAFJjTCuhKlCVVBPNdMkIil6vdtn6cqUqqWznRTsyHZ9Y0_DabTimRZHj4XfPtgbNH7Kr2YIPMQBxRrOMbWBkn-2Sefe9V6HjKxOkalthleuHGknGckZIHtHTLVqLWIax2sXscsD5DMeLRCCHIFLTv1BxVWplZOwhbWJ8JDgbCSLTqR9dLfoQ-Pzzp_9gP_w7e_1tzD7ZYxsl2q4Jru2HVgxjEG9B6V0IXunb-4WAD3Nx0x18mAu-m4soe7T_pLeim0FAvwCv7QSw
CitedBy_id crossref_primary_10_1038_s41598_020_76426_2
crossref_primary_10_1002_em_22267
crossref_primary_10_1073_pnas_1914485116
crossref_primary_10_1093_nar_gkw1322
crossref_primary_10_1093_narcan_zcac042
crossref_primary_10_1038_s41598_020_66651_0
crossref_primary_10_1093_nar_gkx217
crossref_primary_10_1007_s00294_016_0575_5
crossref_primary_10_1093_nar_gkw488
crossref_primary_10_1093_nar_gkz723
crossref_primary_10_1093_nar_gky135
crossref_primary_10_3390_genes13030437
crossref_primary_10_1016_j_molcel_2021_01_012
crossref_primary_10_1016_j_molcel_2021_09_013
crossref_primary_10_1016_j_dnarep_2016_05_006
crossref_primary_10_1371_journal_pgen_1010238
crossref_primary_10_1051_medsci_2018194
crossref_primary_10_1093_femsle_fnx031
crossref_primary_10_1128_mmbr_00078_22
crossref_primary_10_1093_nar_gkac075
Cites_doi 10.1016/0022-2836(86)90273-1
10.1073/pnas.0608293104
10.1101/gad.417607
10.4161/23723548.2014.957039
10.1016/0014-5793(85)80266-0
10.1101/gad.1780709
10.1128/MMBR.63.4.751-813.1999
10.1093/emboj/19.22.6259
10.1038/sj.emboj.7601474
10.1038/35044005
10.1128/9781555817640.ch21
10.1016/0022-2836(89)90259-3
10.1128/JB.97.3.1134-1141.1969
10.1016/j.jmb.2008.06.031
10.1038/sj.onc.1206006
10.1093/genetics/160.3.851
10.1016/0022-2836(68)90445-2
10.1128/JB.182.23.6598-6604.2000
10.1016/0092-8674(93)90493-A
10.1016/0005-2787(71)90551-X
10.1016/j.molcel.2005.11.015
10.1093/nar/gks675
10.1038/nature04329
10.1016/S0300-9084(97)82002-0
10.1038/emboj.2013.211
10.1371/journal.pgen.0030226
10.1128/JB.181.2.508-520.1999
10.1128/JB.156.3.1093-1098.1983
10.3389/fgene.2013.00026
10.1073/pnas.120163297
10.1046/j.1365-2443.2003.00646.x
10.1128/JB.187.6.1974-1984.2005
10.1016/0022-2836(76)90156-X
10.1016/j.dnarep.2009.04.014
10.1126/science.1081328
10.1128/MMBR.00020-08
10.1016/j.molcel.2013.10.020
10.1038/ncomms7357
10.1016/S0092-8674(00)80621-2
10.1073/pnas.1321008111
10.1073/pnas.59.2.598
10.1016/j.jmb.2013.07.021
10.1016/j.mrrev.2015.02.001
10.1126/science.1083964
10.1002/bies.20233
10.1016/j.dnarep.2006.07.002
10.1074/jbc.M112.397034
10.1038/nrm3935
10.1126/science.1209111
ContentType Journal Article
Copyright COPYRIGHT 2015 Public Library of Science
Distributed under a Creative Commons Attribution 4.0 International License
2015 Laureti et al 2015 Laureti et al
2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Laureti L, Demol J, Fuchs RP, Pagès V (2015) Bacterial Proliferation: Keep Dividing and Don't Mind the Gap. PLoS Genet 11(12): e1005757. doi:10.1371/journal.pgen.1005757
Copyright_xml – notice: COPYRIGHT 2015 Public Library of Science
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: 2015 Laureti et al 2015 Laureti et al
– notice: 2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Laureti L, Demol J, Fuchs RP, Pagès V (2015) Bacterial Proliferation: Keep Dividing and Don't Mind the Gap. PLoS Genet 11(12): e1005757. doi:10.1371/journal.pgen.1005757
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
IOV
ISN
ISR
7X8
1XC
VOOES
5PM
DOA
DOI 10.1371/journal.pgen.1005757
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Opposing Viewpoints In Context
Gale In Context: Canada
Gale In Context: Science
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList





MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Bacterial Proliferation: Keep Dividing and Don't Mind the Gap
EISSN 1553-7404
Editor Simmons, Lyle A.
Editor_xml – sequence: 1
  givenname: Lyle A.
  surname: Simmons
  fullname: Simmons, Lyle A.
EndPage e1005757
ExternalDocumentID 1764369759
oai_doaj_org_article_9915441300cf446daed0db6f5f7fb753
oai_HAL_hal_01426227v1
A451530810
10_1371_journal_pgen_1005757
26713761
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
123
29O
2WC
3V.
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ADBBV
ADRAZ
AEAQA
AENEX
AFKRA
AFPKN
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B0M
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
C1A
CCPQU
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EAP
EAS
EBD
EBS
ECM
EIF
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
IHW
INH
INR
IOV
IPNFZ
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
M~E
NPM
O5R
O5S
OK1
P2P
PIMPY
PQQKQ
PROAC
PSQYO
PV9
QF4
QN7
RIG
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOQ
WOW
XSB
~8M
AAYXX
CITATION
7X8
1XC
VOOES
5PM
AAPBV
ABPTK
PQEST
PQUKI
ID FETCH-LOGICAL-c798t-fe150482e6fc8663be2e141482f51504ab67388fc56263310d3d1ca5758459b73
IEDL.DBID RPM
ISSN 1553-7404
1553-7390
IngestDate Sun Jul 02 11:04:35 EDT 2023
Tue Oct 22 15:09:15 EDT 2024
Tue Sep 17 21:25:53 EDT 2024
Tue Oct 15 15:56:13 EDT 2024
Fri Jun 28 10:02:36 EDT 2024
Tue Nov 19 21:02:54 EST 2024
Tue Nov 12 23:25:39 EST 2024
Thu Aug 01 19:25:53 EDT 2024
Thu Aug 01 19:15:53 EDT 2024
Thu Aug 01 20:37:15 EDT 2024
Tue Aug 20 22:07:48 EDT 2024
Fri Aug 23 19:59:18 EDT 2024
Sun Jun 23 00:34:13 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c798t-fe150482e6fc8663be2e141482f51504ab67388fc56263310d3d1ca5758459b73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Conceived and designed the experiments: LL VP. Performed the experiments: LL JD. Analyzed the data: LL VP. Wrote the paper: LL VP RPF.
The authors have declared that no competing interests exist.
ORCID 0000-0002-7863-4922
0000-0002-3059-2903
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4699847/
PMID 26713761
PQID 1752787558
PQPubID 23479
ParticipantIDs plos_journals_1764369759
doaj_primary_oai_doaj_org_article_9915441300cf446daed0db6f5f7fb753
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4699847
hal_primary_oai_HAL_hal_01426227v1
proquest_miscellaneous_1752787558
gale_infotracmisc_A451530810
gale_infotracacademiconefile_A451530810
gale_incontextgauss_ISR_A451530810
gale_incontextgauss_ISN_A451530810
gale_incontextgauss_IOV_A451530810
gale_healthsolutions_A451530810
crossref_primary_10_1371_journal_pgen_1005757
pubmed_primary_26713761
PublicationCentury 2000
PublicationDate 2015-12-01
PublicationDateYYYYMMDD 2015-12-01
PublicationDate_xml – month: 12
  year: 2015
  text: 2015-12-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, CA USA
PublicationTitle PLoS genetics
PublicationTitleAlternate PLoS Genet
PublicationYear 2015
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References NP Higgins (ref5) 1976; 101
N Handa (ref22) 2009; 23
BE Dutra (ref27) 2007; 104
K Morimatsu (ref35) 2012; 287
L Sandell (ref41) 1993; 75
V Pagès (ref1) 2002; 21
GA Pandya (ref12) 2000; 182
M Inuzuka (ref47) 1985; 181
S Mohebi (ref42) 2015; 6
VN Iyer (ref28) 1971; 228
TC Wang (ref36) 1983; 156
V Pagès (ref15) 2003; 300
R Napolitano (ref23) 2000; 19
L Amado (ref30) 2013; 425
RC Heller (ref32) 2006; 439
BB Zhou (ref38) 2000; 408
M Spies (ref21) 2005
T-CV Wang (ref10) 2005; 27
F Prado (ref2) 2014; 1
X Xu (ref3) 2015; 764
R Okazaki (ref29) 1968; 59
KA Datsenko (ref45) 2000; 97
K Naiman (ref18) 2014; 111
D Branzei (ref39) 2009; 8
AI Ozgenc (ref13) 2005; 187
M Lopes (ref31) 2006; 21
P Koehl (ref49) 1989; 207
CE Bauer (ref48) 1986; 192
WD Rupp (ref4) 1968; 31
J Courcelle (ref7) 2003; 299
MS Dillingham (ref20) 2008; 72
P McGlynn (ref6) 2000; 101
K Higuchi (ref16) 2003; 8
S Autret (ref37) 1997; 79
V Pagès (ref17) 2012; 40
ST Lovett (ref26) 2002; 160
CJ Rudolph (ref8) 2007; 21
KJ Neelsen (ref9) 2015; 16
HW Mankouri (ref43) 2013; 32
JTP Yeeles (ref33) 2011; 334
DS Weiss (ref46) 1999; 181
A Kuzminov (ref19) 1999; 63
L Izhar (ref14) 2008; 381
S Fujii (ref24) 2006; 25
AR Lehmann (ref11) 2006; 5
P Howard-Flanders (ref25) 1969; 97
E Esnault (ref44) 2007; 3
JTP Yeeles (ref34) 2013; 52
R Jossen (ref40) 2013; 4
References_xml – volume: 192
  start-page: 513
  year: 1986
  ident: ref48
  article-title: Mutational analysis of integrase arm-type binding sites of bacteriophage lambda. Integration and excision involve distinct interactions of integrase with arm-type sites
  publication-title: Journal of Molecular Biology
  doi: 10.1016/0022-2836(86)90273-1
  contributor:
    fullname: CE Bauer
– volume: 104
  start-page: 216
  year: 2007
  ident: ref27
  article-title: RecA-independent recombination is efficient but limited by exonucleases
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0608293104
  contributor:
    fullname: BE Dutra
– volume: 21
  start-page: 668
  year: 2007
  ident: ref8
  article-title: Replication fork stalling and cell cycle arrest in UV-irradiated Escherichia coli
  publication-title: Genes Dev
  doi: 10.1101/gad.417607
  contributor:
    fullname: CJ Rudolph
– volume: 1
  start-page: e957039
  year: 2014
  ident: ref2
  article-title: Homologous recombination maintenance of genome integrity during DNA damage tolerance
  publication-title: Molecular & Cellular Oncology
  doi: 10.4161/23723548.2014.957039
  contributor:
    fullname: F Prado
– volume: 181
  start-page: 236
  year: 1985
  ident: ref47
  article-title: Plasmid-encoded initiation protein is required for activity at all three origins of plasmid R6K DNA replication in vitro
  publication-title: FEBS Lett
  doi: 10.1016/0014-5793(85)80266-0
  contributor:
    fullname: M Inuzuka
– volume: 23
  start-page: 1234
  year: 2009
  ident: ref22
  article-title: Reconstitution of initial steps of dsDNA break repair by the RecF pathway of E. coli
  publication-title: Genes Dev
  doi: 10.1101/gad.1780709
  contributor:
    fullname: N Handa
– volume: 63
  start-page: 751
  year: 1999
  ident: ref19
  article-title: Recombinational repair of DNA damage in Escherichia coli and bacteriophage lambda
  publication-title: Microbiol Mol Biol Rev
  doi: 10.1128/MMBR.63.4.751-813.1999
  contributor:
    fullname: A Kuzminov
– volume: 19
  start-page: 6259
  year: 2000
  ident: ref23
  article-title: All three SOS-inducible DNA polymerases (Pol II, Pol IV and Pol V) are involved in induced mutagenesis
  publication-title: EMBO J
  doi: 10.1093/emboj/19.22.6259
  contributor:
    fullname: R Napolitano
– volume: 25
  start-page: 5754
  year: 2006
  ident: ref24
  article-title: RecFOR proteins are essential for Pol V-mediated translesion synthesis and mutagenesis
  publication-title: EMBO J
  doi: 10.1038/sj.emboj.7601474
  contributor:
    fullname: S Fujii
– volume: 408
  start-page: 433
  year: 2000
  ident: ref38
  article-title: The DNA damage response: putting checkpoints in perspective
  publication-title: Nature
  doi: 10.1038/35044005
  contributor:
    fullname: BB Zhou
– start-page: 389
  year: 2005
  ident: ref21
  article-title: Homologous recombination by RecBCD and RecF pathways
  publication-title: The bacterial chromosome
  doi: 10.1128/9781555817640.ch21
  contributor:
    fullname: M Spies
– volume: 207
  start-page: 355
  year: 1989
  ident: ref49
  article-title: Construction of plasmids containing a unique acetylaminofluorene adduct located within a mutation hot spot. A new probe for frameshift mutagenesis
  publication-title: Journal of Molecular Biology
  doi: 10.1016/0022-2836(89)90259-3
  contributor:
    fullname: P Koehl
– volume: 97
  start-page: 1134
  year: 1969
  ident: ref25
  article-title: Some properties of excision-defective recombination-deficient mutants of Escherichia coli K-12
  publication-title: J Bacteriol
  doi: 10.1128/JB.97.3.1134-1141.1969
  contributor:
    fullname: P Howard-Flanders
– volume: 381
  start-page: 803
  year: 2008
  ident: ref14
  article-title: Analysis of strand transfer and template switching mechanisms of DNA gap repair by homologous recombination in Escherichia coli: predominance of strand transfer
  publication-title: Journal of Molecular Biology
  doi: 10.1016/j.jmb.2008.06.031
  contributor:
    fullname: L Izhar
– volume: 21
  start-page: 8957
  year: 2002
  ident: ref1
  article-title: How DNA lesions are turned into mutations within cells?
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1206006
  contributor:
    fullname: V Pagès
– volume: 160
  start-page: 851
  year: 2002
  ident: ref26
  article-title: Crossing over between regions of limited homology in Escherichia coli. RecA-dependent and RecA-independent pathways
  publication-title: Genetics
  doi: 10.1093/genetics/160.3.851
  contributor:
    fullname: ST Lovett
– volume: 31
  start-page: 291
  year: 1968
  ident: ref4
  article-title: Discontinuities in the DNA synthesized in an excision-defective strain of Escherichia coli following ultraviolet irradiation
  publication-title: Journal of Molecular Biology
  doi: 10.1016/0022-2836(68)90445-2
  contributor:
    fullname: WD Rupp
– volume: 182
  start-page: 6598
  year: 2000
  ident: ref12
  article-title: Escherichia coli responses to a single DNA adduct
  publication-title: J Bacteriol
  doi: 10.1128/JB.182.23.6598-6604.2000
  contributor:
    fullname: GA Pandya
– volume: 75
  start-page: 729
  year: 1993
  ident: ref41
  article-title: Loss of a yeast telomere: Arrest, recovery, and chromosome loss
  publication-title: Cell
  doi: 10.1016/0092-8674(93)90493-A
  contributor:
    fullname: L Sandell
– volume: 228
  start-page: 117
  year: 1971
  ident: ref28
  article-title: Usefulness of benzoylated naphthoylated DEAE-cellulose to distinguish and fractionate double-stranded DNA bearing different extents of single-stranded regions
  publication-title: Biochim Biophys Acta
  doi: 10.1016/0005-2787(71)90551-X
  contributor:
    fullname: VN Iyer
– volume: 21
  start-page: 15
  year: 2006
  ident: ref31
  article-title: Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions
  publication-title: Molecular Cell
  doi: 10.1016/j.molcel.2005.11.015
  contributor:
    fullname: M Lopes
– volume: 40
  start-page: 9036
  year: 2012
  ident: ref17
  article-title: Monitoring bypass of single replication-blocking lesions by damage avoidance in the Escherichia coli chromosome
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gks675
  contributor:
    fullname: V Pagès
– volume: 439
  start-page: 557
  year: 2006
  ident: ref32
  article-title: Replication fork reactivation downstream of a blocked nascent leading strand
  publication-title: Nature
  doi: 10.1038/nature04329
  contributor:
    fullname: RC Heller
– volume: 79
  start-page: 549
  year: 1997
  ident: ref37
  article-title: Cell cycle checkpoints in bacteria
  publication-title: Biochimie
  doi: 10.1016/S0300-9084(97)82002-0
  contributor:
    fullname: S Autret
– volume: 32
  start-page: 2661
  year: 2013
  ident: ref43
  article-title: How unfinished business from S-phase affects mitosis and beyond
  publication-title: EMBO J
  doi: 10.1038/emboj.2013.211
  contributor:
    fullname: HW Mankouri
– volume: 3
  start-page: e226
  year: 2007
  ident: ref44
  article-title: Chromosome structuring limits genome plasticity in Escherichia coli
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.0030226
  contributor:
    fullname: E Esnault
– volume: 181
  start-page: 508
  year: 1999
  ident: ref46
  article-title: Localization of FtsI (PBP3) to the septal ring requires its membrane anchor, the Z ring, FtsA, FtsQ, and FtsL
  publication-title: J Bacteriol
  doi: 10.1128/JB.181.2.508-520.1999
  contributor:
    fullname: DS Weiss
– volume: 156
  start-page: 1093
  year: 1983
  ident: ref36
  article-title: Mechanisms for recF-dependent and recB-dependent pathways of postreplication repair in UV-irradiated Escherichia coli uvrB
  publication-title: J Bacteriol
  doi: 10.1128/JB.156.3.1093-1098.1983
  contributor:
    fullname: TC Wang
– volume: 4
  start-page: 26
  year: 2013
  ident: ref40
  article-title: . The DNA damage checkpoint response to replication stress: A Game of Forks
  publication-title: Front Genet
  doi: 10.3389/fgene.2013.00026
  contributor:
    fullname: R Jossen
– volume: 97
  start-page: 6640
  year: 2000
  ident: ref45
  article-title: One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.120163297
  contributor:
    fullname: KA Datsenko
– volume: 8
  start-page: 437
  year: 2003
  ident: ref16
  article-title: Fate of DNA replication fork encountering a single DNA lesion during oriC plasmid DNA replication in vitro
  publication-title: Genes Cells
  doi: 10.1046/j.1365-2443.2003.00646.x
  contributor:
    fullname: K Higuchi
– volume: 187
  start-page: 1974
  year: 2005
  ident: ref13
  article-title: In vivo evidence for a recA-independent recombination process in Escherichia coli that permits completion of replication of DNA containing UV damage in both strands
  publication-title: J Bacteriol
  doi: 10.1128/JB.187.6.1974-1984.2005
  contributor:
    fullname: AI Ozgenc
– volume: 101
  start-page: 417
  year: 1976
  ident: ref5
  article-title: A model for replication repair in mammalian cells
  publication-title: Journal of Molecular Biology
  doi: 10.1016/0022-2836(76)90156-X
  contributor:
    fullname: NP Higgins
– volume: 8
  start-page: 1038
  year: 2009
  ident: ref39
  article-title: The checkpoint response to replication stress
  publication-title: DNA Repair
  doi: 10.1016/j.dnarep.2009.04.014
  contributor:
    fullname: D Branzei
– volume: 299
  start-page: 1064
  year: 2003
  ident: ref7
  article-title: DNA damage-induced replication fork regression and processing in Escherichia coli
  publication-title: Science
  doi: 10.1126/science.1081328
  contributor:
    fullname: J Courcelle
– volume: 72
  start-page: 642
  year: 2008
  ident: ref20
  article-title: RecBCD enzyme and the repair of double-stranded DNA breaks
  publication-title: Microbiol Mol Biol Rev
  doi: 10.1128/MMBR.00020-08
  contributor:
    fullname: MS Dillingham
– volume: 52
  start-page: 855
  year: 2013
  ident: ref34
  article-title: Dynamics of leading-strand lesion skipping by the replisome
  publication-title: Molecular Cell
  doi: 10.1016/j.molcel.2013.10.020
  contributor:
    fullname: JTP Yeeles
– volume: 6
  start-page: 6357
  year: 2015
  ident: ref42
  article-title: Checkpoints are blind to replication restart and recombination intermediates that result in gross chromosomal rearrangements
  publication-title: Nat Commun
  doi: 10.1038/ncomms7357
  contributor:
    fullname: S Mohebi
– volume: 101
  start-page: 35
  year: 2000
  ident: ref6
  article-title: Modulation of RNA polymerase by (p)ppGpp reveals a RecG-dependent mechanism for replication fork progression
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80621-2
  contributor:
    fullname: P McGlynn
– volume: 111
  start-page: 5526
  year: 2014
  ident: ref18
  article-title: Chronology in lesion tolerance gives priority to genetic variability
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1321008111
  contributor:
    fullname: K Naiman
– volume: 59
  start-page: 598
  year: 1968
  ident: ref29
  article-title: Mechanism of DNA chain growth. I. Possible discontinuity and unusual secondary structure of newly synthesized chains
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.59.2.598
  contributor:
    fullname: R Okazaki
– volume: 425
  start-page: 4177
  year: 2013
  ident: ref30
  article-title: Low-molecular-weight DNA replication intermediates in Escherichia coli: mechanism of formation and strand specificity
  publication-title: Journal of Molecular Biology
  doi: 10.1016/j.jmb.2013.07.021
  contributor:
    fullname: L Amado
– volume: 764
  start-page: 43
  year: 2015
  ident: ref3
  article-title: Error-free DNA-damage tolerance in Saccharomyces cerevisiae
  publication-title: Mutat Res Rev Mutat Res
  doi: 10.1016/j.mrrev.2015.02.001
  contributor:
    fullname: X Xu
– volume: 300
  start-page: 1300
  year: 2003
  ident: ref15
  article-title: Uncoupling of leading- and lagging-strand DNA replication during lesion bypass in vivo
  publication-title: Science
  doi: 10.1126/science.1083964
  contributor:
    fullname: V Pagès
– volume: 27
  start-page: 633
  year: 2005
  ident: ref10
  article-title: Discontinuous or semi-discontinuous DNA replication in Escherichia coli?
  publication-title: Bioessays
  doi: 10.1002/bies.20233
  contributor:
    fullname: T-CV Wang
– volume: 5
  start-page: 1495
  year: 2006
  ident: ref11
  article-title: Gaps and forks in DNA replication: Rediscovering old models
  publication-title: DNA Repair
  doi: 10.1016/j.dnarep.2006.07.002
  contributor:
    fullname: AR Lehmann
– volume: 287
  start-page: 35621
  year: 2012
  ident: ref35
  article-title: RecFOR proteins target RecA protein to a DNA gap with either DNA or RNA at the 5' terminus: implication for repair of stalled replication forks
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M112.397034
  contributor:
    fullname: K Morimatsu
– volume: 16
  start-page: 207
  year: 2015
  ident: ref9
  article-title: Replication fork reversal in eukaryotes: from dead end to dynamic response
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm3935
  contributor:
    fullname: KJ Neelsen
– volume: 334
  start-page: 235
  year: 2011
  ident: ref33
  article-title: The Escherichia coli replisome is inherently DNA damage tolerant
  publication-title: Science
  doi: 10.1126/science.1209111
  contributor:
    fullname: JTP Yeeles
SSID ssj0035897
Score 2.341922
Snippet DNA Damage Tolerance (DDT) mechanisms help dealing with unrepaired DNA lesions that block replication and challenge genome integrity. Previous in vitro studies...
DNA Damage Tolerance (DDT) mechanisms help dealing with unrepaired DNA lesions that block replication and challenge genome integrity. Previous in vitro studies...
  DNA Damage Tolerance (DDT) mechanisms help dealing with unrepaired DNA lesions that block replication and challenge genome integrity. Previous in vitro...
SourceID plos
doaj
pubmedcentral
hal
proquest
gale
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage e1005757
SubjectTerms Biochemistry, Molecular Biology
Cell Division
Cell proliferation
Chromosomes
DNA Breaks, Single-Stranded
DNA Damage
DNA repair
DNA sequencing
Escherichia coli - genetics
Escherichia coli - physiology
Escherichia coli Proteins - genetics
Escherichia coli Proteins - metabolism
Life Sciences
Methods
Molecular biology
Nucleotide sequencing
Observations
Plasmids
Rec A Recombinases - genetics
Rec A Recombinases - metabolism
Recombinational DNA Repair
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9RAEF7sgeCL-LuxVaMIfYpNdrPZjeDD1Ws9UatYFd-WZHfiCSUJ5k7wv3cmmwuNCPbB12RIst_sj2_IzDeMPY2BZ5DFECWcQ5SWTkSFsjqSonS2FI4roD-6yzN1-lUvjkkmZ2z1RTlhXh7YA3eI_IXaZIk4thWGLq4AF1PpmKxUVSLX7nffONsGU34PFlL7tipSikhhWD8UzQmVHA4-etaigyhHAPmKmhxKvXb_uEPvrChBctaeN93fSOifuZQXDqeTG-z6wCrDuR_NTXYF6lvsqu8z-es2e3HkNZnR5AN16anA-_15-AagDRdUkoVHWFjULlw09cE6fIeheojcMHxVtHfY55PjTy-X0dA3IbIq1-uoAmR5qeaQVVYjoyiBQ5KS4Gcl6U5RUqtPXVlJUjTI75xwiS0QCJ3KvFTiLpvVTQ27LIQ0xwiwdGVS2lRbDK-gipHTAWjhcpcFLNoCZ1ovj2H6f2QKwwo_dkNAmwHogB0RuqMtiVv3F9DlZnC5-ZfLA_aIfGN8pei4RM08xeEJ5DhxwJ70FiRwUVMGzbdi03Xm9fsvlzA6O72M0ceJ0cFgVDU4CWwxlDYghqSuNbHcn1jiWrbTt60IsQvoLOdvDV3DUJZnnKufScB2aTZu8e1MopBWZrmSecAeb2eooUdTAl0NzYZsJMe9WUodsHt-xo6v4ZlCh2X4YDWZy5PvmN6pv696KfI0w3A9Vff_h1v32DVko9LnCu2z2frHBh6wnc5tHvaL-ze4YE06
  priority: 102
  providerName: Directory of Open Access Journals
Title Bacterial Proliferation: Keep Dividing and Don't Mind the Gap
URI https://www.ncbi.nlm.nih.gov/pubmed/26713761
https://search.proquest.com/docview/1752787558
https://hal.science/hal-01426227
https://pubmed.ncbi.nlm.nih.gov/PMC4699847
https://doaj.org/article/9915441300cf446daed0db6f5f7fb753
http://dx.doi.org/10.1371/journal.pgen.1005757
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6RSEhcEO8aSjAIqScn9trrXVfikDYtqUpLRQFxW3kfbiq1ttUklfj3zHjtqEYcKq72JM7OY_f74nkQ8jG0NLVpaIOIUhskysRBzrUIWKyMVrGh3OIb3fk5P_0lZgfYJod1tTBN0r5Wl-Py6npcXi6a3Mr6Wk-6PLHJ2ck-ULoMdtXJgAwAG3YU3W2_MRNuogpjccCB0bf1cjGPJq15xjXYBtMDAKrgED6aAlPjadQ7mpoO_pt9erDANMlhfVUt_wVF_86ovHNEHT4hj1ts6U_dGp6SB7Z8Rh66aZO_n5NPe64zM4ic4ayewjrr7_rH1tb-DAuz4CDz89L4s6rcWfknQNh9QIj-57x-QX4cHnzfnwft9IRA80ysgsIC1ksEtWmhBeAKZamNEmz7WTC8kysc-CkKzbAhDaA8E5tI56ATkbBM8fglGZZVabeIbxNQd6iMipROhAaSZYsQkJ21IjaZST0SdIqTtWuSIZs3ZRzIhVu7RJ3LVuce2UPtbmSxxXVzobq5kK2hJQBXnI8Wh6EugLOa3JoQawZZwQsFJMsj79A20tWLbgJVThNYXgxIJ_TIh0YC21yUmEdzka-XS3n09ec9hM5P7yP0rSe00woVFTiBztsCB9Ah9tjqSW73JCGidf9pC9TYHe3Mp18kXgNCS1NK-W3kkS30xk6_SxlxAJdpxlnmkfedh0r8akyjK221RhlGYYdmTHjklfPYzWO6KPAI7_ly73f070B8Ng3J23h8_d-ffEMeARBlLk1omwxXN2v7lgyWZj0CmnN0PGr-Khk1gf4HVBlPpw
link.rule.ids 230,315,729,782,786,866,887,2106,27933,27934,53800,53802
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6RIAQX3lBDoQYh9eTEXnu9NhKHtGlJ1SRUtCBuK-_DTaXWtpoEiX_PjNeOasSh6tX7Oc7OzI6_kedByCff0NjEvvECSo0XSR16GVeJx0KplQw15Qa_6E5O-fxXMj7ANjmsrYWpk_aVvBgUl1eD4mJR51ZWV2rY5okNT2b7ENKl4FWHPXIfzqvvt0G6dcAhS-xMFcZCj0NM31TMhTwYNgoaVKAdTBAAsoJj-GgMsRqPg87Lqe7hv_HUvQUmSvary3L5PzL6b07ljZfU4ZM7bu8pedywUndkl5-Re6Z4Th7YOZV_XpAve7anM0BOcMpPbqzdfHaPjancMZZ0wSvQzQrtjstid-XOINR3gVu6X7PqJflxeHC2P_GauQue4mmy8nIDLDFKqIlzlQAjkYaaIMKGoTnDlUziqNAkVwxb2QA_1KEOVAayTCKWSh6-Iv2iLMwWcU0EO_GlloFUUaIgPDO5D5zQmCTUqY4d4rUCF5VtryHqb2wcwhK7d4G6Eo2uHLKHWtlgsTl2faG8PheNDAVQXpysFvq-yiHa1ZnRPlYbspznEsIzh-ygToWtNN0ccTGKYHshcCTfIR9rBDbIKDAD5zxbL5fi6NvPW4BO57cBfe-AdhtQXoLxqKwpjQAZYneuDnK7gwRfoLpPW6DEbkhnMpoKvAahMI0p5b8Dh2yhFbfyXYqAAy2NU85Sh3xoLVvgT2MCXmHKNWIYBd_OWOKQ19bSN49pT49DeOcMdP5HdwVMv25l3pj6mzvfuUMeTs5mUzE9mh-_JY-AzjKbbLRN-qvrtXlHeku9fl87iL8dqGNQ
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF6RIBAX3lBDoQYh9eTE3vV6bSQOadOQqm2IKEXcVvY-mkqtbTUJEv-eGT-iGnGo4Gp_jrMzs7PfyPMg5INvaGQi33gBpcYLM828VKjY4yzTKmOaCoNfdKenYvYjHh9gm5zNqK8qaV9lF4P88mqQXyyq3MrySg3bPLHh_GQfQroEvOqw1HbYI3dhz_q0DdRrJ8x4XM9V4Zx5AuL6pmqOiWDYKGlQgoYwSQAIC47ioxHEayIKOgdU1cd_4617C0yW7JeXxfJvhPTPvMobB9Xk0X8s8TF52LBTd1RDnpA7Jn9K7tXzKn89I5_26t7OAJnjtB9ravv56B4ZU7pjLO2Co9BNc-2Oi3x35Z5AyO8Cx3Q_p-VzcjY5-LY_9Zr5C54SSbzyrAG2GMbURFbFwEwyQ00QYuNQy_FOmuHI0Ngqji1tgCdqpgOVgjzjkCeZYC9IPy9ys0VcE8Jq_ExnQabCWEGYZqwP3NCYmOlERw7xWqHLsm6zIatvbQLCk3rtEvUlG305ZA81s8Fik-zqQnF9Lhs5SqC-OGGN-b6yEPXq1Ggfqw65FTaDMM0hO6hXWVecbra6HIWwPAZcyXfI-wqBjTJyzMQ5T9fLpTz88v0WoNPZbUBfO6DdBmQLMCCVNiUSIEPs0tVBbneQ4BNU920LlNgN6UxHxxKvQUhMI0rFz8AhW2jJrXyXMhBAT6NE8MQh71rrlvjTmIiXm2KNGE7Bx3MeO-Rlbe2b17Q7yCGisw86_6N7B8y_amnemPurf35yh9yfjyfy-HB29Jo8AFbL65yjbdJfXa_NG9Jb6vXbykf8BlY6ZdA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bacterial+Proliferation%3A+Keep+Dividing+and+Don%27t+Mind+the+Gap&rft.jtitle=PLoS+genetics&rft.au=Laureti%2C+Luisa&rft.au=Demol%2C+Julien&rft.au=Fuchs%2C+Robert+P&rft.au=Pag%C3%A8s%2C+Vincent&rft.date=2015-12-01&rft.eissn=1553-7404&rft.volume=11&rft.issue=12&rft.spage=e1005757&rft.epage=e1005757&rft_id=info:doi/10.1371%2Fjournal.pgen.1005757&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7404&client=summon