Increased CO 2 fluxes from a sandy Cambisol under agricultural use in the Wendland region, Northern Germany, three years after biochar substrates application
In recent years, biochar has been discussed as an opportunity for carbon sequestration in arable soils. Field experiments under realistic conditions investigating the CO 2 emission from soil after biochar combined with fertilizer additions are scarce. Therefore, we investigated the CO 2 emission and...
Saved in:
Published in: | Global change biology. Bioenergy Vol. 10; no. 7; pp. 432 - 443 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
01-07-2018
|
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | In recent years, biochar has been discussed as an opportunity for carbon sequestration in arable soils. Field experiments under realistic conditions investigating the
CO
2
emission from soil after biochar combined with fertilizer additions are scarce. Therefore, we investigated the
CO
2
emission and its
13
C signature after addition of compost, biogas digestate (originating from C4 feedstock) and mineral fertilizer with and without biochar (0, 3, 10, 40 Mg biochar/ha) to a sandy Cambisol in Northern Germany. Biomass residues were pyrolized at ~650°C to obtain biochar with C3 signature. Gas samples were taken biweekly during the growing season using static chambers three years after biochar substrate addition. The
CO
2
concentration and its δ
13
C isotope signature were measured using a gas chromatograph coupled to an isotope ratio mass spectrometer. Results showed increased
CO
2
emission (30%–60%) when high biochar amount (40 Mg/ha) was applied three years ago together with mineral fertilizer and biogas digestate. On average, 59% of the emitted
CO
2
had a C3 signature (thus, deriving from biochar and/or soil organic matter), independent of the amount of biochar added. In addition, our results clearly demonstrated that only a small amount of released
CO
2
derived from biochar. The results of this field experiment suggest that biochar most likely stimulates microbial activity in soil leading to increased
CO
2
emissions derived from soil organic matter and fertilizers mineralization rather than from biochar. Nevertheless, compared to the amount of carbon added by biochar, additional
CO
2
emission is marginal corroborating the C sequestration potential of biochar. |
---|---|
AbstractList | In recent years, biochar has been discussed as an opportunity for carbon sequestration in arable soils. Field experiments under realistic conditions investigating the
CO
2
emission from soil after biochar combined with fertilizer additions are scarce. Therefore, we investigated the
CO
2
emission and its
13
C signature after addition of compost, biogas digestate (originating from C4 feedstock) and mineral fertilizer with and without biochar (0, 3, 10, 40 Mg biochar/ha) to a sandy Cambisol in Northern Germany. Biomass residues were pyrolized at ~650°C to obtain biochar with C3 signature. Gas samples were taken biweekly during the growing season using static chambers three years after biochar substrate addition. The
CO
2
concentration and its δ
13
C isotope signature were measured using a gas chromatograph coupled to an isotope ratio mass spectrometer. Results showed increased
CO
2
emission (30%–60%) when high biochar amount (40 Mg/ha) was applied three years ago together with mineral fertilizer and biogas digestate. On average, 59% of the emitted
CO
2
had a C3 signature (thus, deriving from biochar and/or soil organic matter), independent of the amount of biochar added. In addition, our results clearly demonstrated that only a small amount of released
CO
2
derived from biochar. The results of this field experiment suggest that biochar most likely stimulates microbial activity in soil leading to increased
CO
2
emissions derived from soil organic matter and fertilizers mineralization rather than from biochar. Nevertheless, compared to the amount of carbon added by biochar, additional
CO
2
emission is marginal corroborating the C sequestration potential of biochar. |
Author | Polifka, Steven Glaser, Bruno Wiedner, Katja |
Author_xml | – sequence: 1 givenname: Steven orcidid: 0000-0002-1793-3590 surname: Polifka fullname: Polifka, Steven organization: Soil Biogeochemistry Institute of Agronomy and Nutritional Sciences Martin Luther University Halle‐Wittenberg Halle (Saale) Germany – sequence: 2 givenname: Katja orcidid: 0000-0003-1090-7813 surname: Wiedner fullname: Wiedner, Katja organization: Soil Biogeochemistry Institute of Agronomy and Nutritional Sciences Martin Luther University Halle‐Wittenberg Halle (Saale) Germany – sequence: 3 givenname: Bruno orcidid: 0000-0002-3057-3868 surname: Glaser fullname: Glaser, Bruno organization: Soil Biogeochemistry Institute of Agronomy and Nutritional Sciences Martin Luther University Halle‐Wittenberg Halle (Saale) Germany |
BookMark | eNo1kM9Kw0AQhxepYFu9-ARzlqZmk2Y3OUrRWij2UvAYJruTNpJsymwC5mF8V1P_zGWGHzPfwDcTE9c6EuJehks51uPRFMVSRonUV2IqdaIDqUM9-Z9VFt-ImfcfYagSJbOp-No6w4SeLKz3EEFZ95_koeS2AQSPzg6wxqaofFtD7ywx4JEr09ddzzhGnqBy0J0I3snZejwApmPVugW8tTzm7GBD3KAbFuMaE8FAyB6w7EZYUbXmhAy-L3zH2I2_8XyuK4PdyLgV1yXWnu7--lwcXp4P69dgt99s10-7wGilAxtbWUikzJDUpGymVJYabXUSRdnKFDoJMYlkrMvIpFoR6TKTSbnKMKXU2iSei4dfrOHWe6YyP3PVIA-5DPOL1_ziNf_xGn8D_dpwcQ |
CitedBy_id | crossref_primary_10_1016_j_scitotenv_2019_05_051 crossref_primary_10_3390_su151310003 crossref_primary_10_1016_j_jclepro_2020_121921 crossref_primary_10_1111_ejss_13088 crossref_primary_10_1016_j_cej_2019_05_139 crossref_primary_10_1016_j_jag_2021_102467 crossref_primary_10_1016_j_biortech_2020_124626 crossref_primary_10_1002_jpln_201800496 crossref_primary_10_3390_en14185763 crossref_primary_10_1016_j_envpol_2022_120433 crossref_primary_10_1016_j_geoderma_2020_114895 crossref_primary_10_1007_s42773_019_00012_7 crossref_primary_10_1016_j_envres_2021_112303 crossref_primary_10_1007_s40333_024_0093_0 crossref_primary_10_3390_s20216117 crossref_primary_10_1002_jpln_202200331 crossref_primary_10_1016_j_scitotenv_2020_138007 crossref_primary_10_1016_j_scitotenv_2021_147170 |
Cites_doi | 10.1016/j.soilbio.2013.12.021 10.5194/bg-3-397-2006 10.1201/b17775-4 10.1016/S1002-0160(15)30057-6 10.1016/j.catena.2014.10.024 10.5772/31200 10.1016/j.gca.2010.11.029 10.1007/BF00334901 10.1002/rcm.1184 10.1080/10256016.2012.666977 10.1046/j.1365-2389.1998.00156.x 10.2136/sssaj2003.1763 10.1002/rcm.3342 10.1007/0-387-33745-8 10.1016/j.geoderma.2004.12.019 10.1111/j.1365-2389.2006.00807.x 10.1126/science.1097396 10.1034/j.1600-0889.2003.00020.x 10.1002/jpln.201100172 10.1021/acs.jafc.5b00846 10.1007/s001140000193 10.1111/gcbb.12266 10.1098/rstb.2006.1978 10.1002/jpln.201400058 10.1016/j.soilbio.2008.10.016 10.4236/as.2012.31014 10.1111/gcbb.12376 10.5194/bgd-5-661-2008 10.1007/BF00335817 10.1038/srep11043 10.1016/j.soilbio.2014.04.029 10.1016/S0146-6380(00)00044-9 10.1016/j.biombioe.2013.08.026 10.1038/ngeo358 10.1016/0016-7037(57)90024-8 10.1029/1999GB900067 10.1002/jpln.200700049 10.1016/j.soilbio.2011.04.022 10.1007/s004420051016 10.1007/s13593-014-0251-4 10.2134/jeq2011.0146 10.5194/bg-10-1067-2013 10.1111/j.1365-2389.2006.00809.x 10.1021/es0348187 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1111/gcbb.12517 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1757-1707 |
EndPage | 443 |
ExternalDocumentID | 10_1111_gcbb_12517 |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 24P 31~ 33P 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 5HH 5LA 5VS 702 7PT 8-0 8-1 8-3 8-4 8-5 8FE 8FG 8FH 8G5 8UM 930 A03 AAEVG AAHBH AAHHS AAONW AAYXX AAZKR ABCQN ABDBF ABEML ABJCF ABPVW ABUWG ACBWZ ACCFJ ACIWK ACPRK ACSCC ACXQS ADBBV ADIZJ ADKYN ADZMN ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFKRA AFRAH AFZJQ AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ASPBG ATUGU AVUZU AVWKF AZBYB AZFZN AZQEC BAFTC BBNVY BCNDV BDRZF BENPR BFHJK BGLVJ BHPHI BNHUX BPHCQ BROTX BRXPI BY8 CAG CCPQU CITATION COF D-E D-F D1I DPXWK DR2 DU5 DWQXO EBD EBS ECGQY EJD ESX F00 F01 F04 F5P FEDTE G-S G.N GNUQQ GODZA GROUPED_DOAJ GUQSH H.T H.X HCIFZ HF~ HOLLA HVGLF HZ~ IAO IGS IHR ITC J0M KB. KQ8 L8X LC2 LC3 LH4 LK8 LP6 LP7 LW6 M2O M7P MK4 M~E N04 N05 N9A NF~ O66 O9- OIG OK1 OVD P2X P4D PDBOC PIMPY PQQKQ PROAC Q.N Q11 QB0 R.K ROL RWI RX1 SUPJJ TEORI TUS UB1 W8V W99 WIH WIN WNSPC WQJ WRC XG1 XV2 ~IA ~WT |
ID | FETCH-LOGICAL-c767-d3d1b1ae9ce17e6d96698c7d752294cb750a52137f2c876ee7f915f49a8e8dd53 |
ISSN | 1757-1693 |
IngestDate | Thu Nov 21 22:22:15 EST 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c767-d3d1b1ae9ce17e6d96698c7d752294cb750a52137f2c876ee7f915f49a8e8dd53 |
ORCID | 0000-0003-1090-7813 0000-0002-1793-3590 0000-0002-3057-3868 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1111_gcbb_12517 |
PublicationCentury | 2000 |
PublicationDate | 2018-07-00 |
PublicationDateYYYYMMDD | 2018-07-01 |
PublicationDate_xml | – month: 07 year: 2018 text: 2018-07-00 |
PublicationDecade | 2010 |
PublicationTitle | Global change biology. Bioenergy |
PublicationYear | 2018 |
References | e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_15_1 e_1_2_6_38_1 Wiedner K. (e_1_2_6_46_1) 2015 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 Troughton J. H. (e_1_2_6_41_1) 1974; 73 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_21_1 Thies J. E. (e_1_2_6_40_1) 2009 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 |
References_xml | – ident: e_1_2_6_22_1 doi: 10.1016/j.soilbio.2013.12.021 – ident: e_1_2_6_36_1 doi: 10.5194/bg-3-397-2006 – ident: e_1_2_6_17_1 doi: 10.1201/b17775-4 – ident: e_1_2_6_25_1 doi: 10.1016/S1002-0160(15)30057-6 – ident: e_1_2_6_48_1 doi: 10.1016/j.catena.2014.10.024 – ident: e_1_2_6_37_1 – start-page: 15 volume-title: Biochar for environmental management: Science, technology and implementation year: 2015 ident: e_1_2_6_46_1 contributor: fullname: Wiedner K. – ident: e_1_2_6_10_1 doi: 10.5772/31200 – ident: e_1_2_6_15_1 doi: 10.1016/j.gca.2010.11.029 – ident: e_1_2_6_33_1 doi: 10.1007/BF00334901 – volume: 73 start-page: 768 year: 1974 ident: e_1_2_6_41_1 article-title: Photosynthetic pathways and carbon isotope discrimination by plants publication-title: Year Book contributor: fullname: Troughton J. H. – ident: e_1_2_6_4_1 doi: 10.1002/rcm.1184 – ident: e_1_2_6_5_1 doi: 10.1080/10256016.2012.666977 – ident: e_1_2_6_11_1 doi: 10.1046/j.1365-2389.1998.00156.x – ident: e_1_2_6_35_1 doi: 10.2136/sssaj2003.1763 – ident: e_1_2_6_50_1 doi: 10.1002/rcm.3342 – ident: e_1_2_6_12_1 doi: 10.1007/0-387-33745-8 – ident: e_1_2_6_6_1 doi: 10.1016/j.geoderma.2004.12.019 – ident: e_1_2_6_7_1 doi: 10.1111/j.1365-2389.2006.00807.x – ident: e_1_2_6_9_1 – ident: e_1_2_6_24_1 doi: 10.1126/science.1097396 – ident: e_1_2_6_34_1 doi: 10.1034/j.1600-0889.2003.00020.x – ident: e_1_2_6_28_1 doi: 10.1002/jpln.201100172 – ident: e_1_2_6_45_1 doi: 10.1021/acs.jafc.5b00846 – ident: e_1_2_6_16_1 doi: 10.1007/s001140000193 – ident: e_1_2_6_44_1 doi: 10.1111/gcbb.12266 – ident: e_1_2_6_13_1 doi: 10.1098/rstb.2006.1978 – ident: e_1_2_6_29_1 doi: 10.1002/jpln.201400058 – ident: e_1_2_6_23_1 doi: 10.1016/j.soilbio.2008.10.016 – ident: e_1_2_6_39_1 doi: 10.4236/as.2012.31014 – ident: e_1_2_6_20_1 doi: 10.1111/gcbb.12376 – start-page: 85 volume-title: Biochar for environmental management: Science and technology year: 2009 ident: e_1_2_6_40_1 contributor: fullname: Thies J. E. – ident: e_1_2_6_19_1 doi: 10.5194/bgd-5-661-2008 – ident: e_1_2_6_21_1 doi: 10.1007/BF00335817 – ident: e_1_2_6_43_1 doi: 10.1038/srep11043 – ident: e_1_2_6_30_1 doi: 10.1016/j.soilbio.2014.04.029 – ident: e_1_2_6_14_1 doi: 10.1016/S0146-6380(00)00044-9 – ident: e_1_2_6_47_1 doi: 10.1016/j.biombioe.2013.08.026 – ident: e_1_2_6_27_1 doi: 10.1038/ngeo358 – ident: e_1_2_6_8_1 doi: 10.1016/0016-7037(57)90024-8 – ident: e_1_2_6_3_1 doi: 10.1029/1999GB900067 – ident: e_1_2_6_32_1 doi: 10.1002/jpln.200700049 – ident: e_1_2_6_26_1 doi: 10.1016/j.soilbio.2011.04.022 – ident: e_1_2_6_49_1 doi: 10.1007/s004420051016 – ident: e_1_2_6_18_1 doi: 10.1007/s13593-014-0251-4 – ident: e_1_2_6_38_1 doi: 10.2134/jeq2011.0146 – ident: e_1_2_6_2_1 doi: 10.5194/bg-10-1067-2013 – ident: e_1_2_6_31_1 doi: 10.1111/j.1365-2389.2006.00809.x – ident: e_1_2_6_42_1 doi: 10.1021/es0348187 |
SSID | ssj0065619 ssib009979516 ssib036249247 |
Score | 2.17795 |
Snippet | In recent years, biochar has been discussed as an opportunity for carbon sequestration in arable soils. Field experiments under realistic conditions... |
SourceID | crossref |
SourceType | Aggregation Database |
StartPage | 432 |
Title | Increased CO 2 fluxes from a sandy Cambisol under agricultural use in the Wendland region, Northern Germany, three years after biochar substrates application |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1LbxMxEICttFzggMpLQAGNBLftVtlXvD6iNrQneiBSuUX22lsF0g3KNgh-DP-1M7bXa4GQyoHLKrKy0a7nyzzs8Qxj76Qip9TUqZwpWq3is7QuqCCAFnXTFlRkjgLF80_84-f6dF7OJ5Ohceo49l8ljWMoazo5-w_SDj-KA_gZZY5XlDpe7yR3_MNTnjkt3F4kedKudz9M706RyKSXnUYdIK_VCp_C9sDdJvJqOxbg2PVmSH28NJ1e2_RzQ0nLYZeHeqedkULvrIBukAaT_MR57H3HcbXa0GGupEelZIvf9km0Tx67w67jgD99nPiCUMfUINPYM4lBcW_Wq_ar9Glp38fja5foQXchL-RLsDFnGBS4YSqtsInXNrI65MEO6phXPKVyMc5aRWPc9coNOnwascojhVz61VNn20tXEuovZuOqUeqYHD4-GschIeA3mxkyGYcYiu5d2nv32L0clV4c3pNuE4KLanTF0W8oMfQNiwPoVtsmNOGNfSldyjobnytyniIvaHHAHvrwBd477h6xiekeswdRUcsn7FcgEE4uIAdHIBCBIMESCAOBYAmEmEBAAmHVAXIGA4HgCDyCgT_w_B2BpQ8sfWDpA08fjPRBRN9TtvgwX5ycp74JSNpwtOG60JnKpBGNybiZaYzOUYlwzTFuEGWj0OGV6IEWvM0bVDTG8FZkVVsKWZta66p4xva7TWeeM8hLWdEu8BTnvcQoWdVtoaaNaGqFjqssXrC3w-Quv7lSL8s_xfvyTt86ZPdHnl-x_Zvtzrxme73evbFY3ALYfp4f |
link.rule.ids | 315,782,786,866,27933,27934 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Increased+CO+2+fluxes+from+a+sandy+Cambisol+under+agricultural+use+in+the+Wendland+region%2C+Northern+Germany%2C+three+years+after+biochar+substrates+application&rft.jtitle=Global+change+biology.+Bioenergy&rft.au=Polifka%2C+Steven&rft.au=Wiedner%2C+Katja&rft.au=Glaser%2C+Bruno&rft.date=2018-07-01&rft.issn=1757-1693&rft.eissn=1757-1707&rft.volume=10&rft.issue=7&rft.spage=432&rft.epage=443&rft_id=info:doi/10.1111%2Fgcbb.12517&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_gcbb_12517 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1757-1693&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1757-1693&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1757-1693&client=summon |