Early detection of skeletal muscle bioenergetic deficit by magnetic resonance spectroscopy in cigarette smoke-exposed mice

Skeletal muscle dysfunction is a common complication and an important prognostic factor in patients with chronic obstructive pulmonary disease (COPD). It is associated with intrinsic muscular abnormalities of the lower extremities, but it is not known whether there is an easy way to predict its pres...

Full description

Saved in:
Bibliographic Details
Published in:PloS one Vol. 15; no. 6; p. e0234606
Main Authors: Pérez-Rial, Sandra, Barreiro, Esther, Fernández-Aceñero, María Jesús, Fernández-Valle, María Encarnación, González-Mangado, Nicolás, Peces-Barba, Germán
Format: Journal Article
Language:English
Published: United States Public Library of Science 22-06-2020
Public Library of Science (PLoS)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Skeletal muscle dysfunction is a common complication and an important prognostic factor in patients with chronic obstructive pulmonary disease (COPD). It is associated with intrinsic muscular abnormalities of the lower extremities, but it is not known whether there is an easy way to predict its presence. Using a mouse model of chronic cigarette smoke exposure, we tested the hypothesis that magnetic resonance spectroscopy allows us to detect muscle bioenergetic deficit in early stages of lung disease. We employed this technique to evaluate the synthesis rate of adenosine triphosphate (ATP) and characterize concomitant mitochondrial dynamics patterns in the gastrocnemius muscle of emphysematous mice. The fibers type composition and citrate synthase (CtS) and cytochrome c oxidase subunit IV (COX4) enzymatic activities were evaluated. We found that the rate of ATP synthesis was reduced in the distal skeletal muscle of mice exposed to cigarette smoke. Emphysematous mice showed a significant reduction in body weight gain, in the cross-sectional area of the total fiber and in the COX4 to CtS activity ratio, due to a significant increase in CtS activity of the gastrocnemius muscle. Taken together, these data support the hypothesis that in the early stage of lung disease, we can detect a decrease in ATP synthesis in skeletal muscle, partly caused by high oxidative mitochondrial enzyme activity. These findings may be relevant to predict the presence of skeletal bioenergetic deficit in the early stage of lung disease besides placing the mitochondria as a potential therapeutic target for the treatment of COPD comorbidities.
Bibliography:Competing Interests: The authors have declared that no competing interests exist
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0234606