Machine Learned Potential Enables Molecular Dynamics Simulation to Predict the Experimental Branching Ratios in the NO Release Channel of Nitroaromatic Compounds

This study employs a machine learning (ML) model using the Gaussian process regression algorithm to generate potential energy surfaces (PES) from density functional theory calculations, facilitating the investigation of photodissociation dynamics of nitroaromatic compounds, resulting in NO release....

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
Main Authors: Sharma, Pooja, Chowdhury, Prahlad Roy, Jain, Amber, Patwari, G. Naresh
Format: Journal Article
Language:English
Published: 17-11-2024
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This study employs a machine learning (ML) model using the Gaussian process regression algorithm to generate potential energy surfaces (PES) from density functional theory calculations, facilitating the investigation of photodissociation dynamics of nitroaromatic compounds, resulting in NO release. The experimentally observed trends in the slow-to-fast branching ratios of the NO moiety were captured by estimating the branching ratio between the two distinct reaction pathways, viz., roaming and oxaziridine mechanisms, calculated from molecular dynamics simulations performed on a reduced two-dimensional T1 surface. The qualitative agreement between the calculated and experimental results suggests that the mechanism dictating NO release is primarily governed by the dynamics on the T1 surface.This study employs a machine learning (ML) model using the Gaussian process regression algorithm to generate potential energy surfaces (PES) from density functional theory calculations, facilitating the investigation of photodissociation dynamics of nitroaromatic compounds, resulting in NO release. The experimentally observed trends in the slow-to-fast branching ratios of the NO moiety were captured by estimating the branching ratio between the two distinct reaction pathways, viz., roaming and oxaziridine mechanisms, calculated from molecular dynamics simulations performed on a reduced two-dimensional T1 surface. The qualitative agreement between the calculated and experimental results suggests that the mechanism dictating NO release is primarily governed by the dynamics on the T1 surface.
AbstractList This study employs a machine learning (ML) model using the Gaussian process regression algorithm to generate potential energy surfaces (PES) from density functional theory calculations, facilitating the investigation of photodissociation dynamics of nitroaromatic compounds, resulting in NO release. The experimentally observed trends in the slow-to-fast branching ratios of the NO moiety were captured by estimating the branching ratio between the two distinct reaction pathways, viz., roaming and oxaziridine mechanisms, calculated from molecular dynamics simulations performed on a reduced two-dimensional T1 surface. The qualitative agreement between the calculated and experimental results suggests that the mechanism dictating NO release is primarily governed by the dynamics on the T1 surface.This study employs a machine learning (ML) model using the Gaussian process regression algorithm to generate potential energy surfaces (PES) from density functional theory calculations, facilitating the investigation of photodissociation dynamics of nitroaromatic compounds, resulting in NO release. The experimentally observed trends in the slow-to-fast branching ratios of the NO moiety were captured by estimating the branching ratio between the two distinct reaction pathways, viz., roaming and oxaziridine mechanisms, calculated from molecular dynamics simulations performed on a reduced two-dimensional T1 surface. The qualitative agreement between the calculated and experimental results suggests that the mechanism dictating NO release is primarily governed by the dynamics on the T1 surface.
Author Chowdhury, Prahlad Roy
Sharma, Pooja
Patwari, G. Naresh
Jain, Amber
Author_xml – sequence: 1
  givenname: Pooja
  surname: Sharma
  fullname: Sharma, Pooja
  organization: Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
– sequence: 2
  givenname: Prahlad Roy
  orcidid: 0000-0003-0293-2680
  surname: Chowdhury
  fullname: Chowdhury, Prahlad Roy
  organization: Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
– sequence: 3
  givenname: Amber
  orcidid: 0000-0003-4108-9112
  surname: Jain
  fullname: Jain, Amber
  organization: Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
– sequence: 4
  givenname: G. Naresh
  orcidid: 0000-0003-0811-7249
  surname: Patwari
  fullname: Patwari, G. Naresh
  organization: Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
BookMark eNotkUtr3DAQgEVIIa_ee9SxF2_0sL3Wsd1u08DmQZq7GY_GXQVZciUvND-n_7TaJqcZho8Phu-CnYYYiLFPUqykUPIaMK9eZoRVjaJeC33CzmWjRNUo2ZyWXXSmalptzthFzi9CCKlVfc7-3gHuXSC-I0iBLH-MC4XFgefbAIOnzO-iJzx4SPzba4DJYeY_3VQOi4uBL5E_JrIOF77siW__zJTcVBTF8DVBONp_8acjnLkL_6H7B_5EniAT3-whBPI8jvzeLSlCilNhkW_iNMdDsPmKfRjBZ_r4Pi_Z8_ft8-ZHtXu4ud182VW4rk3Vmq6WRG2rrRkHq2ojRzEgtCNaCcKiXSuLaqhRqlqQ0IM2Gk1j1h2C7oy-ZJ_ftHOKvw-Ul35yGcl7CBQPuddSmbZTRVxQ8YZiijknGvu5vAzptZeiP8boS4z-GKN_j6H_AS6hhCA
Cites_doi 10.1039/D2DD00084A
10.1021/acs.jpclett.3c03540
10.1016/j.scitotenv.2016.12.115
10.1016/j.jocs.2023.102173
10.1063/5.0059915
10.1039/cs9962500361
10.3390/bioengineering11010051
10.1021/acs.jpclett.3c00134
10.1093/oso/9780195140187.001.0001
10.1021/acs.accounts.0c00770
10.1039/D4CC01497A
10.1119/1.18725
10.1039/D1SC00482D
10.1039/C7SC02267K
10.1146/annurev-physchem-032210-103518
10.1039/D3SC90069J
10.3390/catal11091129
10.1038/s41467-021-27504-0
10.1002/asia.200600107
10.1038/nchem.1194
10.1021/acsami.4c09954
10.1021/acs.chemrev.0c01111
10.1063/1.2435351
10.1021/jacsau.3c00414
10.1063/1.464188
10.1021/jp963095t
10.1021/j100238a002
10.1021/cr00024a005
10.1039/C6CS00714G
10.1146/annurev-physchem-050317-020929
10.1038/s41586-019-1384-z
10.48550/arXiv.1309.0238
10.1073/pnas.1916392117
10.1073/pnas.1308310110
10.1039/D2SC05089G
10.1016/j.jocs.2020.101107
10.1063/5.0084432
10.1021/acs.jpca.1c04893
10.1126/science.1104386
10.1021/ar8000734
10.1002/aenm.202003281
10.1021/acs.jpca.3c03024
ContentType Journal Article
DBID AAYXX
CITATION
7X8
DOI 10.1021/acs.jpca.4c04703
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5215
ExternalDocumentID 10_1021_acs_jpca_4c04703
GroupedDBID ---
-~X
.DC
.K2
123
29L
4.4
53G
55A
5VS
7~N
85S
AABXI
AAYXX
ABJNI
ABMVS
ABPPZ
ABQRX
ABUCX
ACBEA
ACGFS
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CITATION
CS3
CUPRZ
D0L
DU5
EBS
ED~
F5P
GGK
GNL
IH9
IHE
JG~
PZZ
RNS
ROL
TAE
TN5
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
XSW
YQT
YZZ
~02
7X8
ID FETCH-LOGICAL-c749-69841ee663d9fbd2491f0bca6fcd1a0dcd72dc2b4c1240e03b393c95978ca3893
IEDL.DBID ACS
ISSN 1089-5639
1520-5215
IngestDate Mon Nov 18 18:26:24 EST 2024
Wed Nov 20 13:36:25 EST 2024
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c749-69841ee663d9fbd2491f0bca6fcd1a0dcd72dc2b4c1240e03b393c95978ca3893
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0811-7249
0000-0003-4108-9112
0000-0003-0293-2680
PQID 3129682249
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3129682249
crossref_primary_10_1021_acs_jpca_4c04703
PublicationCentury 2000
PublicationDate 2024-11-17
20241117
PublicationDateYYYYMMDD 2024-11-17
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-17
  day: 17
PublicationDecade 2020
PublicationTitle The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
PublicationYear 2024
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
Frisch M. J. (ref39/cit39) 2009
ref32/cit32
ref23/cit23
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
Zwangzig R. (ref41/cit41) 2001
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref7/cit7
References_xml – ident: ref23/cit23
  doi: 10.1039/D2DD00084A
– ident: ref36/cit36
  doi: 10.1021/acs.jpclett.3c03540
– ident: ref4/cit4
  doi: 10.1016/j.scitotenv.2016.12.115
– ident: ref21/cit21
  doi: 10.1016/j.jocs.2023.102173
– ident: ref32/cit32
  doi: 10.1063/5.0059915
– volume-title: Gaussian 09
  year: 2009
  ident: ref39/cit39
  contributor:
    fullname: Frisch M. J.
– ident: ref6/cit6
  doi: 10.1039/cs9962500361
– ident: ref28/cit28
  doi: 10.3390/bioengineering11010051
– ident: ref10/cit10
  doi: 10.1021/acs.jpclett.3c00134
– volume-title: Nonequilibirum Statistical Mechanics
  year: 2001
  ident: ref41/cit41
  doi: 10.1093/oso/9780195140187.001.0001
  contributor:
    fullname: Zwangzig R.
– ident: ref20/cit20
  doi: 10.1021/acs.accounts.0c00770
– ident: ref11/cit11
  doi: 10.1039/D4CC01497A
– ident: ref42/cit42
  doi: 10.1119/1.18725
– ident: ref34/cit34
  doi: 10.1039/D1SC00482D
– ident: ref35/cit35
  doi: 10.1039/C7SC02267K
– ident: ref16/cit16
  doi: 10.1146/annurev-physchem-032210-103518
– ident: ref22/cit22
  doi: 10.1039/D3SC90069J
– ident: ref33/cit33
  doi: 10.3390/catal11091129
– ident: ref29/cit29
  doi: 10.1038/s41467-021-27504-0
– ident: ref12/cit12
  doi: 10.1002/asia.200600107
– ident: ref9/cit9
  doi: 10.1038/nchem.1194
– ident: ref27/cit27
  doi: 10.1021/acsami.4c09954
– ident: ref30/cit30
  doi: 10.1021/acs.chemrev.0c01111
– ident: ref8/cit8
  doi: 10.1063/1.2435351
– ident: ref37/cit37
  doi: 10.1021/jacsau.3c00414
– ident: ref7/cit7
  doi: 10.1063/1.464188
– ident: ref19/cit19
  doi: 10.1021/jp963095t
– ident: ref43/cit43
  doi: 10.1021/j100238a002
– ident: ref1/cit1
  doi: 10.1021/cr00024a005
– ident: ref3/cit3
  doi: 10.1039/C6CS00714G
– ident: ref14/cit14
  doi: 10.1146/annurev-physchem-050317-020929
– ident: ref25/cit25
  doi: 10.1038/s41586-019-1384-z
– ident: ref40/cit40
  doi: 10.48550/arXiv.1309.0238
– ident: ref24/cit24
  doi: 10.1073/pnas.1916392117
– ident: ref5/cit5
  doi: 10.1073/pnas.1308310110
– ident: ref38/cit38
  doi: 10.1039/D2SC05089G
– ident: ref31/cit31
  doi: 10.1016/j.jocs.2020.101107
– ident: ref26/cit26
  doi: 10.1063/5.0084432
– ident: ref18/cit18
  doi: 10.1021/acs.jpca.1c04893
– ident: ref13/cit13
  doi: 10.1126/science.1104386
– ident: ref15/cit15
  doi: 10.1021/ar8000734
– ident: ref2/cit2
  doi: 10.1002/aenm.202003281
– ident: ref17/cit17
  doi: 10.1021/acs.jpca.3c03024
SSID ssj0001324
Score 2.5072093
Snippet This study employs a machine learning (ML) model using the Gaussian process regression algorithm to generate potential energy surfaces (PES) from density...
SourceID proquest
crossref
SourceType Aggregation Database
Title Machine Learned Potential Enables Molecular Dynamics Simulation to Predict the Experimental Branching Ratios in the NO Release Channel of Nitroaromatic Compounds
URI https://www.proquest.com/docview/3129682249
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgF7iwI8qmQeLCIeAkbpZj6aJeWqq2B26Rt0hFkFRJ-kH8KeMsqEVcenesaMaaeeMZv0fIo-NxwTtmzi-kymKI8C1OhWcFdkcxxbnrc3PhNpr7k_egP9ikyfnbwXfsFy7z548VlvdMUuZXxJ6-Zw5wtzf_DbpYVLFqlj60Oph1647kfxtsZ6DtAFxmleHxLv9zQo5q7AjdytmnZE8nZ-Sg10i2nZPvcTkaqaFkTdUKpmlhpoHwo0H5RiqHcSOHC_1Kiz6H-fKr1vCCIoVpZlo3BSAwhMEG_T-8GgkOc18FM7M4h2VSLpq8wQxzF2ZDME8VEv0JaQyTZZGlPEtLRlgwUcfoN-UXZDEcLHojq9ZgsKTPQssLA2ZrjbBEhbFQWKvZMRWSe7FUNqdKKt9R0hFMIk6gmrrCDV0ZYpUSSG6w0CVpJWmirwggVpDCj6mkXDMEmcKmPA64FBhktMc6bfLUuCVaVUwbUdkhd-wIbR4Zm0e1zdvkofFbhCY2PQ6e6HSdRy7iF89MxobXO-x3Qw4dBCvmjaHt35JWka31HdnP1fq-PGY_qjnSaw
link.rule.ids 315,782,786,2769,27933,27934
linkProvider American Chemical Society
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learned+Potential+Enables+Molecular+Dynamics+Simulation+to+Predict+the+Experimental+Branching+Ratios+in+the+NO+Release+Channel+of+Nitroaromatic+Compounds&rft.jtitle=The+journal+of+physical+chemistry.+A%2C+Molecules%2C+spectroscopy%2C+kinetics%2C+environment%2C+%26+general+theory&rft.au=Sharma%2C+Pooja&rft.au=Chowdhury%2C+Prahlad+Roy&rft.au=Jain%2C+Amber&rft.au=Patwari%2C+G+Naresh&rft.date=2024-11-17&rft.issn=1520-5215&rft.eissn=1520-5215&rft_id=info:doi/10.1021%2Facs.jpca.4c04703&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-5639&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-5639&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-5639&client=summon