Machine Learned Potential Enables Molecular Dynamics Simulation to Predict the Experimental Branching Ratios in the NO Release Channel of Nitroaromatic Compounds
This study employs a machine learning (ML) model using the Gaussian process regression algorithm to generate potential energy surfaces (PES) from density functional theory calculations, facilitating the investigation of photodissociation dynamics of nitroaromatic compounds, resulting in NO release....
Saved in:
Published in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
17-11-2024
|
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | This study employs a machine learning (ML) model using the Gaussian process regression algorithm to generate potential energy surfaces (PES) from density functional theory calculations, facilitating the investigation of photodissociation dynamics of nitroaromatic compounds, resulting in NO release. The experimentally observed trends in the slow-to-fast branching ratios of the NO moiety were captured by estimating the branching ratio between the two distinct reaction pathways, viz., roaming and oxaziridine mechanisms, calculated from molecular dynamics simulations performed on a reduced two-dimensional T1 surface. The qualitative agreement between the calculated and experimental results suggests that the mechanism dictating NO release is primarily governed by the dynamics on the T1 surface.This study employs a machine learning (ML) model using the Gaussian process regression algorithm to generate potential energy surfaces (PES) from density functional theory calculations, facilitating the investigation of photodissociation dynamics of nitroaromatic compounds, resulting in NO release. The experimentally observed trends in the slow-to-fast branching ratios of the NO moiety were captured by estimating the branching ratio between the two distinct reaction pathways, viz., roaming and oxaziridine mechanisms, calculated from molecular dynamics simulations performed on a reduced two-dimensional T1 surface. The qualitative agreement between the calculated and experimental results suggests that the mechanism dictating NO release is primarily governed by the dynamics on the T1 surface. |
---|---|
AbstractList | This study employs a machine learning (ML) model using the Gaussian process regression algorithm to generate potential energy surfaces (PES) from density functional theory calculations, facilitating the investigation of photodissociation dynamics of nitroaromatic compounds, resulting in NO release. The experimentally observed trends in the slow-to-fast branching ratios of the NO moiety were captured by estimating the branching ratio between the two distinct reaction pathways, viz., roaming and oxaziridine mechanisms, calculated from molecular dynamics simulations performed on a reduced two-dimensional T1 surface. The qualitative agreement between the calculated and experimental results suggests that the mechanism dictating NO release is primarily governed by the dynamics on the T1 surface.This study employs a machine learning (ML) model using the Gaussian process regression algorithm to generate potential energy surfaces (PES) from density functional theory calculations, facilitating the investigation of photodissociation dynamics of nitroaromatic compounds, resulting in NO release. The experimentally observed trends in the slow-to-fast branching ratios of the NO moiety were captured by estimating the branching ratio between the two distinct reaction pathways, viz., roaming and oxaziridine mechanisms, calculated from molecular dynamics simulations performed on a reduced two-dimensional T1 surface. The qualitative agreement between the calculated and experimental results suggests that the mechanism dictating NO release is primarily governed by the dynamics on the T1 surface. |
Author | Chowdhury, Prahlad Roy Sharma, Pooja Patwari, G. Naresh Jain, Amber |
Author_xml | – sequence: 1 givenname: Pooja surname: Sharma fullname: Sharma, Pooja organization: Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India – sequence: 2 givenname: Prahlad Roy orcidid: 0000-0003-0293-2680 surname: Chowdhury fullname: Chowdhury, Prahlad Roy organization: Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India – sequence: 3 givenname: Amber orcidid: 0000-0003-4108-9112 surname: Jain fullname: Jain, Amber organization: Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India – sequence: 4 givenname: G. Naresh orcidid: 0000-0003-0811-7249 surname: Patwari fullname: Patwari, G. Naresh organization: Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India |
BookMark | eNotkUtr3DAQgEVIIa_ee9SxF2_0sL3Wsd1u08DmQZq7GY_GXQVZciUvND-n_7TaJqcZho8Phu-CnYYYiLFPUqykUPIaMK9eZoRVjaJeC33CzmWjRNUo2ZyWXXSmalptzthFzi9CCKlVfc7-3gHuXSC-I0iBLH-MC4XFgefbAIOnzO-iJzx4SPzba4DJYeY_3VQOi4uBL5E_JrIOF77siW__zJTcVBTF8DVBONp_8acjnLkL_6H7B_5EniAT3-whBPI8jvzeLSlCilNhkW_iNMdDsPmKfRjBZ_r4Pi_Z8_ft8-ZHtXu4ud182VW4rk3Vmq6WRG2rrRkHq2ojRzEgtCNaCcKiXSuLaqhRqlqQ0IM2Gk1j1h2C7oy-ZJ_ftHOKvw-Ul35yGcl7CBQPuddSmbZTRVxQ8YZiijknGvu5vAzptZeiP8boS4z-GKN_j6H_AS6hhCA |
Cites_doi | 10.1039/D2DD00084A 10.1021/acs.jpclett.3c03540 10.1016/j.scitotenv.2016.12.115 10.1016/j.jocs.2023.102173 10.1063/5.0059915 10.1039/cs9962500361 10.3390/bioengineering11010051 10.1021/acs.jpclett.3c00134 10.1093/oso/9780195140187.001.0001 10.1021/acs.accounts.0c00770 10.1039/D4CC01497A 10.1119/1.18725 10.1039/D1SC00482D 10.1039/C7SC02267K 10.1146/annurev-physchem-032210-103518 10.1039/D3SC90069J 10.3390/catal11091129 10.1038/s41467-021-27504-0 10.1002/asia.200600107 10.1038/nchem.1194 10.1021/acsami.4c09954 10.1021/acs.chemrev.0c01111 10.1063/1.2435351 10.1021/jacsau.3c00414 10.1063/1.464188 10.1021/jp963095t 10.1021/j100238a002 10.1021/cr00024a005 10.1039/C6CS00714G 10.1146/annurev-physchem-050317-020929 10.1038/s41586-019-1384-z 10.48550/arXiv.1309.0238 10.1073/pnas.1916392117 10.1073/pnas.1308310110 10.1039/D2SC05089G 10.1016/j.jocs.2020.101107 10.1063/5.0084432 10.1021/acs.jpca.1c04893 10.1126/science.1104386 10.1021/ar8000734 10.1002/aenm.202003281 10.1021/acs.jpca.3c03024 |
ContentType | Journal Article |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1021/acs.jpca.4c04703 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5215 |
ExternalDocumentID | 10_1021_acs_jpca_4c04703 |
GroupedDBID | --- -~X .DC .K2 123 29L 4.4 53G 55A 5VS 7~N 85S AABXI AAYXX ABJNI ABMVS ABPPZ ABQRX ABUCX ACBEA ACGFS ACNCT ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CITATION CS3 CUPRZ D0L DU5 EBS ED~ F5P GGK GNL IH9 IHE JG~ PZZ RNS ROL TAE TN5 UI2 UKR UPT VF5 VG9 VQA W1F WH7 XSW YQT YZZ ~02 7X8 |
ID | FETCH-LOGICAL-c749-69841ee663d9fbd2491f0bca6fcd1a0dcd72dc2b4c1240e03b393c95978ca3893 |
IEDL.DBID | ACS |
ISSN | 1089-5639 1520-5215 |
IngestDate | Mon Nov 18 18:26:24 EST 2024 Wed Nov 20 13:36:25 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c749-69841ee663d9fbd2491f0bca6fcd1a0dcd72dc2b4c1240e03b393c95978ca3893 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0811-7249 0000-0003-4108-9112 0000-0003-0293-2680 |
PQID | 3129682249 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3129682249 crossref_primary_10_1021_acs_jpca_4c04703 |
PublicationCentury | 2000 |
PublicationDate | 2024-11-17 20241117 |
PublicationDateYYYYMMDD | 2024-11-17 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-17 day: 17 |
PublicationDecade | 2020 |
PublicationTitle | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory |
PublicationYear | 2024 |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 Frisch M. J. (ref39/cit39) 2009 ref32/cit32 ref23/cit23 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref43/cit43 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 Zwangzig R. (ref41/cit41) 2001 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref7/cit7 |
References_xml | – ident: ref23/cit23 doi: 10.1039/D2DD00084A – ident: ref36/cit36 doi: 10.1021/acs.jpclett.3c03540 – ident: ref4/cit4 doi: 10.1016/j.scitotenv.2016.12.115 – ident: ref21/cit21 doi: 10.1016/j.jocs.2023.102173 – ident: ref32/cit32 doi: 10.1063/5.0059915 – volume-title: Gaussian 09 year: 2009 ident: ref39/cit39 contributor: fullname: Frisch M. J. – ident: ref6/cit6 doi: 10.1039/cs9962500361 – ident: ref28/cit28 doi: 10.3390/bioengineering11010051 – ident: ref10/cit10 doi: 10.1021/acs.jpclett.3c00134 – volume-title: Nonequilibirum Statistical Mechanics year: 2001 ident: ref41/cit41 doi: 10.1093/oso/9780195140187.001.0001 contributor: fullname: Zwangzig R. – ident: ref20/cit20 doi: 10.1021/acs.accounts.0c00770 – ident: ref11/cit11 doi: 10.1039/D4CC01497A – ident: ref42/cit42 doi: 10.1119/1.18725 – ident: ref34/cit34 doi: 10.1039/D1SC00482D – ident: ref35/cit35 doi: 10.1039/C7SC02267K – ident: ref16/cit16 doi: 10.1146/annurev-physchem-032210-103518 – ident: ref22/cit22 doi: 10.1039/D3SC90069J – ident: ref33/cit33 doi: 10.3390/catal11091129 – ident: ref29/cit29 doi: 10.1038/s41467-021-27504-0 – ident: ref12/cit12 doi: 10.1002/asia.200600107 – ident: ref9/cit9 doi: 10.1038/nchem.1194 – ident: ref27/cit27 doi: 10.1021/acsami.4c09954 – ident: ref30/cit30 doi: 10.1021/acs.chemrev.0c01111 – ident: ref8/cit8 doi: 10.1063/1.2435351 – ident: ref37/cit37 doi: 10.1021/jacsau.3c00414 – ident: ref7/cit7 doi: 10.1063/1.464188 – ident: ref19/cit19 doi: 10.1021/jp963095t – ident: ref43/cit43 doi: 10.1021/j100238a002 – ident: ref1/cit1 doi: 10.1021/cr00024a005 – ident: ref3/cit3 doi: 10.1039/C6CS00714G – ident: ref14/cit14 doi: 10.1146/annurev-physchem-050317-020929 – ident: ref25/cit25 doi: 10.1038/s41586-019-1384-z – ident: ref40/cit40 doi: 10.48550/arXiv.1309.0238 – ident: ref24/cit24 doi: 10.1073/pnas.1916392117 – ident: ref5/cit5 doi: 10.1073/pnas.1308310110 – ident: ref38/cit38 doi: 10.1039/D2SC05089G – ident: ref31/cit31 doi: 10.1016/j.jocs.2020.101107 – ident: ref26/cit26 doi: 10.1063/5.0084432 – ident: ref18/cit18 doi: 10.1021/acs.jpca.1c04893 – ident: ref13/cit13 doi: 10.1126/science.1104386 – ident: ref15/cit15 doi: 10.1021/ar8000734 – ident: ref2/cit2 doi: 10.1002/aenm.202003281 – ident: ref17/cit17 doi: 10.1021/acs.jpca.3c03024 |
SSID | ssj0001324 |
Score | 2.5072093 |
Snippet | This study employs a machine learning (ML) model using the Gaussian process regression algorithm to generate potential energy surfaces (PES) from density... |
SourceID | proquest crossref |
SourceType | Aggregation Database |
Title | Machine Learned Potential Enables Molecular Dynamics Simulation to Predict the Experimental Branching Ratios in the NO Release Channel of Nitroaromatic Compounds |
URI | https://www.proquest.com/docview/3129682249 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgF7iwI8qmQeLCIeAkbpZj6aJeWqq2B26Rt0hFkFRJ-kH8KeMsqEVcenesaMaaeeMZv0fIo-NxwTtmzi-kymKI8C1OhWcFdkcxxbnrc3PhNpr7k_egP9ikyfnbwXfsFy7z548VlvdMUuZXxJ6-Zw5wtzf_DbpYVLFqlj60Oph1647kfxtsZ6DtAFxmleHxLv9zQo5q7AjdytmnZE8nZ-Sg10i2nZPvcTkaqaFkTdUKpmlhpoHwo0H5RiqHcSOHC_1Kiz6H-fKr1vCCIoVpZlo3BSAwhMEG_T-8GgkOc18FM7M4h2VSLpq8wQxzF2ZDME8VEv0JaQyTZZGlPEtLRlgwUcfoN-UXZDEcLHojq9ZgsKTPQssLA2ZrjbBEhbFQWKvZMRWSe7FUNqdKKt9R0hFMIk6gmrrCDV0ZYpUSSG6w0CVpJWmirwggVpDCj6mkXDMEmcKmPA64FBhktMc6bfLUuCVaVUwbUdkhd-wIbR4Zm0e1zdvkofFbhCY2PQ6e6HSdRy7iF89MxobXO-x3Qw4dBCvmjaHt35JWka31HdnP1fq-PGY_qjnSaw |
link.rule.ids | 315,782,786,2769,27933,27934 |
linkProvider | American Chemical Society |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learned+Potential+Enables+Molecular+Dynamics+Simulation+to+Predict+the+Experimental+Branching+Ratios+in+the+NO+Release+Channel+of+Nitroaromatic+Compounds&rft.jtitle=The+journal+of+physical+chemistry.+A%2C+Molecules%2C+spectroscopy%2C+kinetics%2C+environment%2C+%26+general+theory&rft.au=Sharma%2C+Pooja&rft.au=Chowdhury%2C+Prahlad+Roy&rft.au=Jain%2C+Amber&rft.au=Patwari%2C+G+Naresh&rft.date=2024-11-17&rft.issn=1520-5215&rft.eissn=1520-5215&rft_id=info:doi/10.1021%2Facs.jpca.4c04703&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-5639&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-5639&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-5639&client=summon |