Reproduction, Embryonic Development, and Maternal Transfer of Contaminants in the Amphibian Gastrophryne carolinensis

Although many amphibian populations around the world are declining at alarming rates, the cause of most declines remains unknown. Environmental contamination is one of several factors implicated in declines and may have particularly important effects on sensitive developmental stages. Despite the se...

Full description

Saved in:
Bibliographic Details
Published in:Environmental health perspectives Vol. 114; no. 5; pp. 661 - 666
Main Authors: Hopkins, William Alexander, DuRant, Sarah Elizabeth, Staub, Brandon Patrick, Rowe, Christopher Lee, Jackson, Brian Phillip
Format: Journal Article
Language:English
Published: United States National Institute of Environmental Health Sciences. National Institutes of Health. Department of Health, Education and Welfare 01-05-2006
National Institute of Environmental Health Sciences
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Although many amphibian populations around the world are declining at alarming rates, the cause of most declines remains unknown. Environmental contamination is one of several factors implicated in declines and may have particularly important effects on sensitive developmental stages. Despite the severe effects of maternal transfer of contaminants on early development in other vertebrate lineages, no studies have examined the effects of maternal transfer of contaminants on reproduction or development in amphibians. We examined maternal transfer of contaminants in eastern narrow-mouth toads (Gastrophryne carolinensis) collected from a reference site and near a coal-burning power plant. Adult toads inhabiting the industrial area transferred significant quantities of selenium and strontium to their eggs, but Se concentrations were most notable (up to 100 µg/g dry mass). Compared with the reference site, hatching success was reduced by 11% in clutches from the contaminated site. In surviving larvae, the frequency of developmental abnormalities and abnormal swimming was 55-58% higher in the contaminated site relative to the reference site. Craniofacial abnormalities were nearly an order of magnitude more prevalent in hatchlings from the contaminated site. When all developmental criteria were considered collectively, offspring from the contaminated site experienced 19% lower viability. Although there was no statistical relationship between the concentration of Se or Sr transferred to eggs and any measure of offspring viability, our study demonstrates that maternal transfer may be an important route of contaminant exposure in amphibians that has been overlooked.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
The authors declare they have no competing financial interests.
ISSN:0091-6765
1552-9924
DOI:10.1289/ehp.8457