Respiratory dialysis with an active-mixing extracorporeal carbon dioxide removal system in a chronic sheep study
Purpose The objective of this study was to demonstrate the safety and performance of a unique extracorporeal carbon dioxide removal system (Hemolung, ALung Technologies, Pittsburgh, PA) which incorporates active mixing to improve gas exchange efficiency, reduce exposure of blood to the circuit, and...
Saved in:
Published in: | Intensive care medicine Vol. 38; no. 10; pp. 1705 - 1711 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Berlin/Heidelberg
Springer-Verlag
01-10-2012
Springer Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Purpose
The objective of this study was to demonstrate the safety and performance of a unique extracorporeal carbon dioxide removal system (Hemolung, ALung Technologies, Pittsburgh, PA) which incorporates active mixing to improve gas exchange efficiency, reduce exposure of blood to the circuit, and provide partial respiratory support at dialysis-like settings.
Methods
An animal study was conducted using eight domestic crossbred sheep, 6–18 months of age and 49–115 kg in weight. The sheep were sedated and intubated, and a 15.5-Fr dual lumen catheter was inserted into the right jugular vein. The catheter was connected to the extracorporeal circuit primed with heparinized saline, and flow immediately initiated. The animals were then awakened and encouraged to stand. The animals were supported in a stanchion and monitored around the clock. Anticoagulation was maintained with heparin to achieve an aPTT of 46–70 s.
Results
Measurements included blood flow rate through the device, carbon dioxide exchange rate, pump speed and sweep gas flow rate. Safety and biocompatibility measurements included but were not limited to plasma-free hemoglobin, hematocrit, white blood cell count, platelet count and fibrinogen. The Hemolung removed clinically significant amounts of carbon dioxide, more than 50 ml/min, at low blood flows of 350–450 ml/min, with minimal adverse effects.
Conclusions
The results of 8-day trials in awake and standing sheep supported by the Hemolung demonstrated that this device can consistently achieve clinically relevant levels of carbon dioxide removal without failure and without significant risk of adverse reactions. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0342-4642 1432-1238 |
DOI: | 10.1007/s00134-012-2651-8 |