Usefulness of Robotic Stereotactic Assistance (ROSA®) Device for Stereoelectroencephalography Electrode Implantation: A Systematic Review and Meta-analysis

The aim of this study was to systematically review and meta-analyze the efficiency and safety of using the Robotic Stereotactic Assistance (ROSA®) device (Zimmer Biomet; Warsaw, IN, USA) for stereoelectroencephalography (SEEG) electrode implantation in patients with drug-resistant epilepsy. Based on...

Full description

Saved in:
Bibliographic Details
Published in:Neurologia Medico-Chirurgica Vol. 64; no. 2; pp. 71 - 86
Main Authors: KAEWBORISUTSAKUL, Anukoon, CHERNOV, Mikhail, YOKOSAKO, Suguru, KUBOTA, Yuichi
Format: Journal Article
Language:English
Published: Japan The Japan Neurosurgical Society 15-02-2024
THE JAPAN NEUROSURGICAL SOCIETY
Japan Science and Technology Agency
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The aim of this study was to systematically review and meta-analyze the efficiency and safety of using the Robotic Stereotactic Assistance (ROSA®) device (Zimmer Biomet; Warsaw, IN, USA) for stereoelectroencephalography (SEEG) electrode implantation in patients with drug-resistant epilepsy. Based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, a literature search was carried out. Overall, 855 nonduplicate relevant articles were determined, and 15 of them were selected for analysis. The benefits of the ROSA® device use in terms of electrode placement accuracy, as well as operative time length, perioperative complications, and seizure outcomes, were evaluated. Studies that were included reported on a total of 11,257 SEEG electrode implantations. The limited number of comparative studies hindered the comprehensive evaluation of the electrode implantation accuracy. Compared with frame-based or navigation-assisted techniques, ROSA®-assisted SEEG electrode implantation provided significant benefits for reduction of both overall operative time (mean difference [MD], −63.45 min; 95% confidence interval [CI] from −88.73 to −38.17 min; P < 0.00001) and operative time per implanted electrode (MD, −8.79 min; 95% CI from −14.37 to −3.21 min; P = 0.002). No significant differences existed in perioperative complications and seizure outcomes after the application of the ROSA® device and other techniques for electrode implantation. To conclude, the available evidence shows that the ROSA® device is an effective and safe surgical tool for trajectory-guided SEEG electrode implantation in patients with drug-resistant epilepsy, offering benefits for saving operative time and neither increasing the risk of perioperative complications nor negatively impacting seizure outcomes.
AbstractList The aim of this study was to systematically review and meta-analyze the efficiency and safety of using the Robotic Stereotactic Assistance (ROSA Ⓡ ) device (Zimmer Biomet; Warsaw, IN, USA) for stereoelectroencephalography (SEEG) electrode implantation in patients with drug-resistant epilepsy. Based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, a literature search was carried out. Overall, 855 nonduplicate relevant articles were determined, and 15 of them were selected for analysis. The benefits of the ROSA Ⓡ device use in terms of electrode placement accuracy, as well as operative time length, perioperative complications, and seizure outcomes, were evaluated. Studies that were included reported on a total of 11,257 SEEG electrode implantations. The limited number of comparative studies hindered the comprehensive evaluation of the electrode implantation accuracy. Compared with frame-based or navigation-assisted techniques, ROSA Ⓡ -assisted SEEG electrode implantation provided significant benefits for reduction of both overall operative time (mean difference [MD], −63.45 min; 95% confidence interval [CI] from −88.73 to −38.17 min; P < 0.00001) and operative time per implanted electrode (MD, −8.79 min; 95% CI from −14.37 to −3.21 min; P = 0.002). No significant differences existed in perioperative complications and seizure outcomes after the application of the ROSA Ⓡ device and other techniques for electrode implantation. To conclude, the available evidence shows that the ROSA Ⓡ device is an effective and safe surgical tool for trajectory-guided SEEG electrode implantation in patients with drug-resistant epilepsy, offering benefits for saving operative time and neither increasing the risk of perioperative complications nor negatively impacting seizure outcomes.
[Abstract] The aim of this study was to systematically review and meta-analyze the efficiency and safety of using the Robotic Stereotactic Assistance (ROSA(R)) device (Zimmer Biomet; Warsaw, IN, USA) for stereoelectroencephalography (SEEG) electrode implantation in patients with drug-resistant epilepsy. Based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, a literature search was carried out. Overall, 855 nonduplicate relevant articles were determined, and 15 of them were selected for analysis. The benefits of the ROSA(R) device use in terms of electrode placement accuracy, as well as operative time length, perioperative complications, and seizure outcomes, were evaluated. Studies that were included reported on a total of 11,257 SEEG electrode implantations. The limited number of comparative studies hindered the comprehensive evaluation of the electrode implantation accuracy. Compared with frame-based or navigation-assisted techniques, ROSA(R)-assisted SEEG electrode implantation provided significant benefits for reduction of both overall operative time (mean difference [MD], -63.45 min; 95% confidence interval [CI] from -88.73 to -38.17 min; P < 0.00001) and operative time per implanted electrode (MD, -8.79 min; 95% CI from -14.37 to -3.21 min; P = 0.002). No significant differences existed in perioperative complications and seizure outcomes after the application of the ROSA(R) device and other techniques for electrode implantation. To conclude, the available evidence shows that the ROSA(R) device is an effective and safe surgical tool for trajectory-guided SEEG electrode implantation in patients with drug-resistant epilepsy, offering benefits for saving operative time and neither increasing the risk of perioperative complications nor negatively impacting seizure outcomes.
The aim of this study was to systematically review and meta-analyze the efficiency and safety of using the Robotic Stereotactic Assistance (ROSA ) device (Zimmer Biomet; Warsaw, IN, USA) for stereoelectroencephalography (SEEG) electrode implantation in patients with drug-resistant epilepsy. Based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, a literature search was carried out. Overall, 855 nonduplicate relevant articles were determined, and 15 of them were selected for analysis. The benefits of the ROSA device use in terms of electrode placement accuracy, as well as operative time length, perioperative complications, and seizure outcomes, were evaluated. Studies that were included reported on a total of 11,257 SEEG electrode implantations. The limited number of comparative studies hindered the comprehensive evaluation of the electrode implantation accuracy. Compared with frame-based or navigation-assisted techniques, ROSA -assisted SEEG electrode implantation provided significant benefits for reduction of both overall operative time (mean difference [MD], -63.45 min; 95% confidence interval [CI] from -88.73 to -38.17 min; P < 0.00001) and operative time per implanted electrode (MD, -8.79 min; 95% CI from -14.37 to -3.21 min; P = 0.002). No significant differences existed in perioperative complications and seizure outcomes after the application of the ROSA device and other techniques for electrode implantation. To conclude, the available evidence shows that the ROSA device is an effective and safe surgical tool for trajectory-guided SEEG electrode implantation in patients with drug-resistant epilepsy, offering benefits for saving operative time and neither increasing the risk of perioperative complications nor negatively impacting seizure outcomes.
The aim of this study was to systematically review and meta-analyze the efficiency and safety of using the Robotic Stereotactic Assistance (ROSAⓇ) device (Zimmer Biomet; Warsaw, IN, USA) for stereoelectroencephalography (SEEG) electrode implantation in patients with drug-resistant epilepsy. Based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, a literature search was carried out. Overall, 855 nonduplicate relevant articles were determined, and 15 of them were selected for analysis. The benefits of the ROSAⓇ device use in terms of electrode placement accuracy, as well as operative time length, perioperative complications, and seizure outcomes, were evaluated. Studies that were included reported on a total of 11,257 SEEG electrode implantations. The limited number of comparative studies hindered the comprehensive evaluation of the electrode implantation accuracy. Compared with frame-based or navigation-assisted techniques, ROSAⓇ-assisted SEEG electrode implantation provided significant benefits for reduction of both overall operative time (mean difference [MD], −63.45 min; 95% confidence interval [CI] from −88.73 to −38.17 min; P < 0.00001) and operative time per implanted electrode (MD, −8.79 min; 95% CI from −14.37 to −3.21 min; P = 0.002). No significant differences existed in perioperative complications and seizure outcomes after the application of the ROSAⓇ device and other techniques for electrode implantation. To conclude, the available evidence shows that the ROSAⓇ device is an effective and safe surgical tool for trajectory-guided SEEG electrode implantation in patients with drug-resistant epilepsy, offering benefits for saving operative time and neither increasing the risk of perioperative complications nor negatively impacting seizure outcomes.
The aim of this study was to systematically review and meta-analyze the efficiency and safety of using the Robotic Stereotactic Assistance (ROSA®) device (Zimmer Biomet; Warsaw, IN, USA) for stereoelectroencephalography (SEEG) electrode implantation in patients with drug-resistant epilepsy. Based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, a literature search was carried out. Overall, 855 nonduplicate relevant articles were determined, and 15 of them were selected for analysis. The benefits of the ROSA® device use in terms of electrode placement accuracy, as well as operative time length, perioperative complications, and seizure outcomes, were evaluated. Studies that were included reported on a total of 11,257 SEEG electrode implantations. The limited number of comparative studies hindered the comprehensive evaluation of the electrode implantation accuracy. Compared with frame-based or navigation-assisted techniques, ROSA®-assisted SEEG electrode implantation provided significant benefits for reduction of both overall operative time (mean difference [MD], −63.45 min; 95% confidence interval [CI] from −88.73 to −38.17 min; P < 0.00001) and operative time per implanted electrode (MD, −8.79 min; 95% CI from −14.37 to −3.21 min; P = 0.002). No significant differences existed in perioperative complications and seizure outcomes after the application of the ROSA® device and other techniques for electrode implantation. To conclude, the available evidence shows that the ROSA® device is an effective and safe surgical tool for trajectory-guided SEEG electrode implantation in patients with drug-resistant epilepsy, offering benefits for saving operative time and neither increasing the risk of perioperative complications nor negatively impacting seizure outcomes.
ArticleNumber 2023-0119
Author YOKOSAKO, Suguru
KAEWBORISUTSAKUL, Anukoon
CHERNOV, Mikhail
KUBOTA, Yuichi
Author_xml – sequence: 1
  fullname: KAEWBORISUTSAKUL, Anukoon
  organization: Neurological Surgery Unit, Division of Surgery, Faculty of Medicine, Prince of Songkla University
– sequence: 2
  fullname: CHERNOV, Mikhail
  organization: Department of Neurosurgery, Tokyo Women's Medical University Adachi Medical Center
– sequence: 3
  fullname: YOKOSAKO, Suguru
  organization: Department of Neurosurgery, Tokyo Women's Medical University Adachi Medical Center
– sequence: 4
  fullname: KUBOTA, Yuichi
  organization: Department of Neurosurgery, Tokyo Women's Medical University Adachi Medical Center
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38220166$$D View this record in MEDLINE/PubMed
BookMark eNpVUstuEzEUHaEiGko_gA0aiQ0spvg1MzYbFIVSIhVVSuja8niuk4kmdrCdovwL38BH8GV4mgd0Y8u-555zrn1eZmfWWciy1xhdEVxXH1Y2FHatrwgitEAYi2fZCFMmCo6IOMtGiNWo4BiV59llCF2DEGGcUV6_yM4pJwThqhplv-4DmG1vIYTcmXzmGhc7nc8jeHBR6eEwTu0hKqshfze7m4___H6ff4aHLp2N8wcs9KCjd5BQm6Xq3cKrzXKXX--vW8in602vbFSxc_ZjPs7nuxBhrQaBWSKDn7mybf4NoiqUVf0uab7KnhvVB7g87BfZ_Zfr75Ovxe3dzXQyvi10zXAsVGNo1aJGNxSoMUYoqACXDWgjyjQoZ7wkJW0EFprjGjEGWDcA2ABtBSb0IpvueVunVnLju7XyO-lUJx8vnF9I5ZPRHqRA2LQICY04YlXJOVekrqFsdItZw3Xi-rTn2mybNbQabPSqf0L6tGK7pVy4B4mRwJyVdWJ4e2Dw7scWQpQrt_XpSYIkoqxRmpkNnvEepb0LwYM5SWAkh4DIFBCZAiKHgMghIKnnzf_eTh3HOCTAzR6Qqp1Ov2j7zsI__TSkha2HgZNJhCqGSNoSPapxWnjFKCWsGuxN9kyrlJwFnKSO7zgYq5gkj8vR4Kmql8pLsPQvtLTsVA
CitedBy_id crossref_primary_10_1080_02656736_2024_2364721
Cites_doi 10.1016/j.wneu.2020.04.218
10.1212/WNL.0000000000003509
10.1007/s10143-020-01445-6
10.3171/2021.10.FOCUS21533
10.3171/2018.5.PEDS17718
10.1093/neuros/nyy466
10.1016/j.neuchi.2017.03.002
10.3171/2018.7.PEDS18305
10.1007/s00381-021-05107-w
10.3171/2018.7.JNS181164
10.1046/j.1445-2197.2003.02748.x
10.1227/NEU.0000000000001034
10.3171/2018.10.PEDS18227
10.1093/ons/opz281
10.1111/epi.13298
10.1038/s41598-021-96662-4
10.3171/2018.1.PEDS17435
10.3390/children7080094
10.1371/journal.pmed.1003583
10.1093/neuros/nyaa428
10.1093/neuros/nyx576
10.1016/j.eplepsyres.2019.106253
10.1159/000503831
10.1111/j.1528-1167.2012.03672.x
10.1227/NEU.0b013e31827d1161
10.1002/rcs.1888
10.1093/ons/opab217
10.1111/epi.13713
10.3171/2022.5.JNS22804
10.1016/j.yebeh.2018.11.002
10.1111/epi.14596
10.3171/2017.2.FOCUS16579
10.1891/9780826136930.0001
10.1093/neuros/nyy261
10.1007/s11701-022-01504-8
10.3171/2020.5.JNS20975
10.3171/2020.10.JNS201843
10.1093/brain/124.9.1683
10.2176/jns-nmc.2022-0010
10.2176/jns-nmc.2022-0271
10.1016/j.neucli.2020.11.001
10.3171/2014.7.JNS132306
10.1111/epi.13515
10.1007/s10143-022-01908-y
10.21037/apm-20-2123
10.1093/neuros/nyz498
10.1002/epi4.12535
10.1001/jamaneurol.2019.0098
ContentType Journal Article
Copyright 2024 The Japan Neurosurgical Society
2024. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Japan Neurosurgical Society
– notice: 2024. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor Tokyo Women's Medical University Adachi Medical Center
Neurological Surgery Unit
Department of Neurosurgery
Prince of Songkla University
Faculty of Medicine
Division of Surgery
CorporateAuthor_xml – name: Division of Surgery
– name: Faculty of Medicine
– name: Department of Neurosurgery
– name: Prince of Songkla University
– name: Tokyo Women's Medical University Adachi Medical Center
– name: Neurological Surgery Unit
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TK
5PM
DOA
DOI 10.2176/jns-nmc.2023-0119
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Neurosciences Abstracts
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Neurosciences Abstracts
DatabaseTitleList

MEDLINE


Neurosciences Abstracts
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 1349-8029
EndPage 86
ExternalDocumentID oai_doaj_org_article_901fd009c080465888a277e5bcd14b8c
10_2176_jns_nmc_2023_0119
38220166
cd1neure_2024_006402_003_0071_00864332462
article_nmc_64_2_64_2023_0119_article_char_en
Genre Meta-Analysis
Systematic Review
Journal Article
GroupedDBID ---
.55
.GJ
123
29N
2WC
53G
ACPRK
ADBBV
AENEX
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BKOMP
CS3
DIK
DU5
E3Z
F5P
GROUPED_DOAJ
GX1
HYE
JMI
JSF
JSH
KQ8
MOJWN
M~E
OK1
P6G
RJT
RNS
RPM
RZJ
TR2
X7M
PGMZT
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TK
5PM
ID FETCH-LOGICAL-c741t-abf36d0bcb3e3fff9ae6e15becf952208485253b919c817044e1cbee1fe3d9123
IEDL.DBID RPM
ISSN 0470-8105
IngestDate Tue Oct 22 15:15:10 EDT 2024
Tue Sep 17 21:29:16 EDT 2024
Thu Oct 10 20:41:50 EDT 2024
Fri Aug 23 03:02:11 EDT 2024
Sat Nov 02 12:30:49 EDT 2024
Fri Nov 08 06:53:25 EST 2024
Thu Mar 07 14:25:18 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords epilepsy
Robotic Stereotactic Assistance (ROSA®)
stereoelectroencephalography
depth electrode implantation
efficacy
Language English
License This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives International License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c741t-abf36d0bcb3e3fff9ae6e15becf952208485253b919c817044e1cbee1fe3d9123
Notes Department of Neurosurgery, Tokyo Women's Medical University Adachi Medical Center, 4-33-1 Kohoku, Adachi-ku, Tokyo 123-8558, Japan.
e-mail: Kubota.Yuichi@twmu.ac.jp
Corresponding author: Yuichi Kubota, M.D., Ph.D.
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10918457/
PMID 38220166
PQID 2957074142
PQPubID 2048494
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_901fd009c080465888a277e5bcd14b8c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10918457
proquest_journals_2957074142
crossref_primary_10_2176_jns_nmc_2023_0119
pubmed_primary_38220166
medicalonline_journals_cd1neure_2024_006402_003_0071_00864332462
jstage_primary_article_nmc_64_2_64_2023_0119_article_char_en
PublicationCentury 2000
PublicationDate 2024-Feb-15
PublicationDateYYYYMMDD 2024-02-15
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-Feb-15
  day: 15
PublicationDecade 2020
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Tokyo
PublicationTitle Neurologia Medico-Chirurgica
PublicationTitleAlternate Neurol. Med. Chir.(Tokyo)
PublicationYear 2024
Publisher The Japan Neurosurgical Society
THE JAPAN NEUROSURGICAL SOCIETY
Japan Science and Technology Agency
Publisher_xml – name: The Japan Neurosurgical Society
– name: THE JAPAN NEUROSURGICAL SOCIETY
– name: Japan Science and Technology Agency
References 23) Slim K, Nini E, Forestier D, Kwiatkowski F, Panis Y, Chipponi J: Methodological index for non-randomized studies (MINORS): development and validation of a new instrument. ANZ J Surg 73: 712-716, 2003
21) Miller C, Schatmeyer B, Landazuri P, et al.: sEEG for expansion of a surgical epilepsy program: safety and efficacy in 152 consecutive cases. Epilepsia Open 6: 694-702, 2021
3) Kalilani L, Sun X, Pelgrims B, Noack-Rink M, Villanueva V: The epidemiology of drug-resistant epilepsy: a systematic review and meta-analysis. Epilepsia 59: 2179-2193, 2018
18) Abel TJ, Varela Osorio R, Amorim-Leite R, et al.: Frameless robot-assisted stereoelectroencephalography in children: technical aspects and comparison with Talairach frame technique. J Neurosurg Pediatr 22: 37-46, 2018
44) Bonda DJ, Pruitt R, Goldstein T, et al.: Robotic surgical assistant (ROSA™) rehearsal: using 3-dimensional printing technology to facilitate the introduction of stereotactic robotic neurosurgical equipment. Oper Neurosurg (Hagerstown) 19: 94-97, 2020
26) Zhao R, Xue P, Zhou Y, et al.: Application of robot-assisted frameless stereoelectroencephalography based on multimodal image guidance in pediatric refractory epilepsy: experience of a pediatric center in a developing country. World Neurosurg 140: e161-e168, 2020
6) Isnard J, Taussig D, Bartolomei F, et al.: French guidelines on stereoelectroencephalography (SEEG). Neurophysiol Clin 48: 5-13, 2018
10) Serletis D, Bulacio J, Bingaman W, Najm I, González-Martínez J: The stereotactic approach for mapping epileptic networks: a prospective study of 200 patients. J Neurosurg 121: 1239-1246, 2014
39) Vakharia VN, Sparks R, O'Keeffe AG, et al.: Accuracy of intracranial electrode placement for stereoelectroencephalography: a systematic review and meta-analysis. Epilepsia 58: 921-932, 2017
13) Rollo PS, Rollo MJ, Zhu P, Woolnough O, Tandon N: Oblique trajectory angles in robotic stereo-electroencephalography. J Neurosurg 135: 245-254, 2020
42) Vakharia VN, Rodionov R, Miserocchi A, et al.: Comparison of robotic and manual implantation of intracerebral electrodes: a single-centre, single-blinded, randomised controlled trial. Sci Rep 11: 17127, 2021
40) Philipp LR, Matias CM, Thalheimer S, Mehta SH, Sharan A, Wu C: Robot-assisted stereotaxy reduces target error: a meta-analysis and meta-regression of 6056 trajectories. Neurosurgery 88: 222-233, 2021
27) Zheng J, Liu Y, Zhang D, et al.: Robot-assisted versus stereotactic frame-based stereoelectroencephalography in medically refractory epilepsy. Neurophysiol Clin 51: 111-119, 2021
41) Cardinale F, Cossu M, Castana L, et al.: Stereoelectroencephalography: surgical methodology, safety, and stereotactic application accuracy in 500 procedures. Neurosurgery 72: 353-366, 2013
12) Tandon N, Tong BA, Friedman ER, et al.: Analysis of morbidity and outcomes associated with use of subdural grids vs stereoelectroencephalography in patients with intractable epilepsy. JAMA Neurol 76: 672-681, 2019
15) Kojima Y, Uda T, Kawashima T, et al.: Primary experiences with robot-assisted navigation-based frameless stereo-electroencephalography: higher accuracy than neuronavigation-guided manual adjustment. Neurol Med Chir (Tokyo) 62: 361-368, 2022
29) De Benedictis A, Trezza A, Carai A, et al.: Robot-assisted procedures in pediatric neurosurgery. Neurosurg Focus 42 (5): E7, 2017
47) McGovern RA, Butler RS, Bena J, Gonzalez-Martinez J: Incorporating new technology into a surgical technique: the learning curve of a single surgeon's stereo-electroencephalography experience. Neurosurgery 86: E281-E289, 2020
2) Beghi E: The epidemiology of epilepsy. Neuroepidemiology 54: 185-191, 2020
8) Mullin JP, Shriver M, Alomar S, et al.: Is SEEG safe? A systematic review and meta-analysis of stereo-electroencephalography-related complications. Epilepsia 57: 386-401, 2016
9) Garcia-Lorenzo B, del Pino-Sedeño T, Rocamora R, López JE, Serrano-Aguilar P, Trujillo-Martín MM: Stereoelectroencephalography for refractory epileptic patients considered for surgery: systematic review, meta-analysis, and economic evaluation. Neurosurgery 84: 326-338, 2019
16) Maesawa S, Ishizaki T, Mutoh M, et al.: Clinical impacts of stereotactic electroencephalography on epilepsy surgery and associated issues in the current situation in Japan. Neurol Med Chir (Tokyo) 63: 179-190, 2023
43) Hines K, Matias CM, Leibold A, Sharan A, Wu C: Accuracy and efficiency using frameless transient fiducial registration in stereoelectroencephalography and deep brain stimulation. J Neurosurg 138: 299-305, 2023
49) Vilanilam GC, Venkat EH: Ethical nuances and medicolegal vulnerabilities in robotic neurosurgery. Neurosurg Focus 52 (1): E2, 2022
46) Sacino MF, Huang SS, Schreiber J, Gaillard WD, Oluigbo CO: Is the use of stereotactic electroencephalography safe and effective in children? A meta-analysis of the use of stereotactic electroencephalography in comparison to subdural grids for invasive epilepsy monitoring in pediatric subjects. Neurosurgery 84: 1190-1200, 2019
25) Sharma JD, Seunarine KK, Tahir MZ, Tisdall MM: Accuracy of robot-assisted versus optical frameless navigated stereoelectroencephalography electrode placement in children. J Neurosurg Pediatr 23: 297-302, 2019
7) Chauvel P: The history and principles of stereo EEG, in Schuele SU (ed): A Practical Approach to Stereo EEG. New York, Demos Medical Publishing, Springer Publishing Company, LLC, 2021, pp 3-11
4) Rosenow F, Lüders H: Presurgical evaluation of epilepsy. Brain 124: 1683-1700, 2001
24) Bourdillon P, Châtillon CE, Moles A, et al.: Effective accuracy of stereoelectroencephalography: robotic 3D versus Talairach orthogonal approaches. J Neurosurg 131: 1938-1946, 2018
30) Ollivier I, Behr C, Cebula H, et al.: Efficacy and safety in frameless robot-assisted stereo-electroencephalography (SEEG) for drug-resistant epilepsy. Neurochirurgie 63: 286-290, 2017
20) Machetanz K, Grimm F, Wuttke T, et al.: Frame-based and robot-assisted insular stereo-electroencephalography via an anterior or posterior oblique approach. J Neurosurg 135: 1477-1486, 2021
48) Shlobin NA, Huang J, Wu C: Learning curves in robotic neurosurgery: a systematic review. Neurosurg Rev 46: 14, 2023
19) Kim LH, Feng AY, Ho AL, et al.: Robot-assisted versus manual navigated stereoelectroencephalography in adult medically-refractory epilepsy patients. Epilepsy Res 159: 106253, 2020
11) Fomenko A, Serletis D: Robotic stereotaxy in cranial neurosurgery: a qualitative systematic review. Neurosurgery 83: 642-650, 2018
33) Spyrantis A, Cattani A, Strzelczyk A, Rosenow F, Seifert V, Freiman TM: Robot-guided stereoelectroencephalography without a computed tomography scan for referencing: analysis of accuracy. Int J Med Robot 14: e1888, 2018
1) Fiest KM, Sauro KM, Wiebe S, et al.: Prevalence and incidence of epilepsy: a systematic review and meta-analysis of international studies. Neurology 88: 296-303, 2017
36) Bonda DJ, Pruitt R, Theroux L, et al.: Robot-assisted stereoelectroencephalography electrode placement in twenty-three pediatric patients: a high-resolution analysis of individual lead placement time and accuracy at a single institution. Childs Nerv Syst 37: 2251-2259, 2021
5) Gonzalez-Martinez J, Bulacio J, Alexopoulos A, Jehi L, Bingaman W, Najm I: Stereoelectroencephalography in the "difficult to localize" refractory focal epilepsy: early experience from a North American epilepsy center. Epilepsia 54: 323-330, 2013
38) Jayakar P, Gotman J, Harvey AS, et al.: Diagnostic utility of invasive EEG for epilepsy surgery: indications, modalities, and techniques. Epilepsia 57: 1735-1747, 2016
35) Nelson JH, Brackett SL, Oluigbo CO, Reddy SK: Robotic stereotactic assistance (ROSA) for pediatric epilepsy: a single-center experience of 23 consecutive cases. Children (Basel) 7 (8): 94, 2020
45) Ball T, González-Martínez J, Zemmar A, et al.: Robotic applications in cranial neurosurgery: current and future. Oper Neurosurg (Hagerstown) 21: 371-379, 2021
17) González-Martínez J, Bulacio J, Thompson S, et al.: Technique, results, and complications related to robot-assisted stereoelectroencephalography. Neurosurgery 78: 169-180, 2016
32) McGovern RA, Knight EP, Gupta A, et al.: Robot-assisted stereoelectroencephalography in children. J Neurosurg Pediatr 23: 288-296, 2019
31) Ho AL, Muftuoglu Y, Pendharkar AV, et al.: Robot-guided pediatric stereoelectroencephalography: single-institution experience. J Neurosurg Pediatr 22: 1-8, 2018
14) Stumpo V, Staartjes VE, Klukowska AM, et al.: Global adoption of robotic technology into neurosurgical practice and research. Neurosurg Rev 44: 2675-2687, 2021
34) Spyrantis A, Cattani A, Woebbecke T, et al.: Electrode placement accuracy in robot-assisted epilepsy surgery: a comparison of different referencing techniques including frame-based CT versus facial laser scan based on CT or MRI. Epilepsy Behav 91: 38-47, 2019
22) Page MJ, McKenzie JE, Bossuyt PM, et al.: The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. PLoS Med 18: e1003583, 2021
28) Yao Y, Hu W, Zhang C, et al.: A comparison between robot-guided and stereotactic frame-based stereoelectroencephalography (SEEG) electrode implantation for drug-resistant epilepsy. J Robot Surg 17: 1013-1020, 2023
37) Lu C, Chen S, An Y, et al.: How can the accuracy of SEEG be increased? - an analysis of the accuracy of multilobe-spanning SEEG electrodes based on a frameless stereotactic robot-assisted system. Ann Palliat Med 10: 3699-3705, 2021
44
45
46
47
48
49
10
11
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
References_xml – ident: 26
  doi: 10.1016/j.wneu.2020.04.218
– ident: 1
  doi: 10.1212/WNL.0000000000003509
– ident: 14
  doi: 10.1007/s10143-020-01445-6
– ident: 49
  doi: 10.3171/2021.10.FOCUS21533
– ident: 31
  doi: 10.3171/2018.5.PEDS17718
– ident: 46
  doi: 10.1093/neuros/nyy466
– ident: 30
  doi: 10.1016/j.neuchi.2017.03.002
– ident: 32
  doi: 10.3171/2018.7.PEDS18305
– ident: 36
  doi: 10.1007/s00381-021-05107-w
– ident: 24
  doi: 10.3171/2018.7.JNS181164
– ident: 23
  doi: 10.1046/j.1445-2197.2003.02748.x
– ident: 17
  doi: 10.1227/NEU.0000000000001034
– ident: 25
  doi: 10.3171/2018.10.PEDS18227
– ident: 44
  doi: 10.1093/ons/opz281
– ident: 8
  doi: 10.1111/epi.13298
– ident: 42
  doi: 10.1038/s41598-021-96662-4
– ident: 18
  doi: 10.3171/2018.1.PEDS17435
– ident: 35
  doi: 10.3390/children7080094
– ident: 22
  doi: 10.1371/journal.pmed.1003583
– ident: 40
  doi: 10.1093/neuros/nyaa428
– ident: 11
  doi: 10.1093/neuros/nyx576
– ident: 19
  doi: 10.1016/j.eplepsyres.2019.106253
– ident: 2
  doi: 10.1159/000503831
– ident: 5
  doi: 10.1111/j.1528-1167.2012.03672.x
– ident: 41
  doi: 10.1227/NEU.0b013e31827d1161
– ident: 33
  doi: 10.1002/rcs.1888
– ident: 45
  doi: 10.1093/ons/opab217
– ident: 39
  doi: 10.1111/epi.13713
– ident: 43
  doi: 10.3171/2022.5.JNS22804
– ident: 34
  doi: 10.1016/j.yebeh.2018.11.002
– ident: 3
  doi: 10.1111/epi.14596
– ident: 29
  doi: 10.3171/2017.2.FOCUS16579
– ident: 7
  doi: 10.1891/9780826136930.0001
– ident: 9
  doi: 10.1093/neuros/nyy261
– ident: 28
  doi: 10.1007/s11701-022-01504-8
– ident: 13
  doi: 10.3171/2020.5.JNS20975
– ident: 20
  doi: 10.3171/2020.10.JNS201843
– ident: 4
  doi: 10.1093/brain/124.9.1683
– ident: 15
  doi: 10.2176/jns-nmc.2022-0010
– ident: 16
  doi: 10.2176/jns-nmc.2022-0271
– ident: 27
  doi: 10.1016/j.neucli.2020.11.001
– ident: 10
  doi: 10.3171/2014.7.JNS132306
– ident: 38
  doi: 10.1111/epi.13515
– ident: 48
  doi: 10.1007/s10143-022-01908-y
– ident: 37
  doi: 10.21037/apm-20-2123
– ident: 47
  doi: 10.1093/neuros/nyz498
– ident: 6
– ident: 21
  doi: 10.1002/epi4.12535
– ident: 12
  doi: 10.1001/jamaneurol.2019.0098
SSID ssib002484387
ssj0037382
ssib002484385
ssib042166867
ssib023157258
ssib000959794
ssib023157257
ssib044754309
Score 2.391785
SecondaryResourceType review_article
Snippet The aim of this study was to systematically review and meta-analyze the efficiency and safety of using the Robotic Stereotactic Assistance (ROSA®) device...
[Abstract] The aim of this study was to systematically review and meta-analyze the efficiency and safety of using the Robotic Stereotactic Assistance (ROSA(R))...
The aim of this study was to systematically review and meta-analyze the efficiency and safety of using the Robotic Stereotactic Assistance (ROSA ) device...
The aim of this study was to systematically review and meta-analyze the efficiency and safety of using the Robotic Stereotactic Assistance (ROSA Ⓡ ) device...
The aim of this study was to systematically review and meta-analyze the efficiency and safety of using the Robotic Stereotactic Assistance (ROSAⓇ) device...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
medicalonline
jstage
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 71
SubjectTerms Convulsions & seizures
depth electrode implantation
Drug resistance
Drug Resistant Epilepsy - surgery
efficacy
Electrodes
Electrodes, Implanted
Electroencephalography - methods
Epilepsy
Humans
Meta-analysis
Retrospective Studies
Review
Robotic Stereotactic Assistance (ROSA®)
robotic stereotactic assistance (rosaⓡ)
Robotic Surgical Procedures - methods
Seizures
stereoelectroencephalography
Stereotaxic Techniques
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3NbtQwEMct6AkJIRBfgYJ84ABIUfPh-ANxYKFb9QJIXSpxs-x4rFLRpGJ3n4EH4MzL8STMxNmwWyFx4RJp4zjZeCYzf8v2z4w9A6NjGwiFWHvsoKgCchelzKNQEUoTvB-Wix0v1IfP-nBOmJxpqy-aE5bwwKnhDjBfxYBCgIjYAtOl1q5SChrfhlJ43Q7Rt5BbnamUeLSodXPlt0rDmqjC5cF5t8y7C4IYVjShiEg7W4lp4PdjUjpHiUZr729epGGThK_4mxq9OqlyK0sd3Wa3RnnJZ-m17rBr0N1lP0-XENdfKajxPvKT3vdYzBfYpNCvhlVSHM1EShJdgD8_-biY_frx_QU_BIojHHXtePG4aQ5Fg8szt8Fd83k6HYATbNil1UzdKz7jiwkUzdMoBHdd4O9h5XI34lDusdOj-ad3x_m4LUPeovxY5c7HWobCt76GOsZoHEgoG3SGaFDNEaC_qZram9K0hP8TAsrWA5QR6mAwU95ne13fwUPGa2gr2YZoDHjsBwmnFSgRfRGKRoMuMvZyYxN7megbFnstZECLBrRoQEsGtGTAjL0lq00XEjh7OIHuZEd3sv9yp4y9TjafbrOpSc-SwlbDYfPMqZTWyGGgydibHU-xY0RYWrw_EUqB6go7DKBWBGa1JPIs9SyJJCdklbH9jXP9qV2ZRpH4E1j8IPnZ9Adr1Hgo3GXG9I4H7jTEbkn35WwgiRMVVotGPfofTfeY3aB3oyntZbPP9lbf1vCEXV-G9dPh4_wNNOFBeg
  priority: 102
  providerName: Directory of Open Access Journals
Title Usefulness of Robotic Stereotactic Assistance (ROSA®) Device for Stereoelectroencephalography Electrode Implantation: A Systematic Review and Meta-analysis
URI https://www.jstage.jst.go.jp/article/nmc/64/2/64_2023-0119/_article/-char/en
http://mol.medicalonline.jp/en/journal/download?GoodsID=cd1neure/2024/006402/003&name=0071-0086e
https://www.ncbi.nlm.nih.gov/pubmed/38220166
https://www.proquest.com/docview/2957074142
https://pubmed.ncbi.nlm.nih.gov/PMC10918457
https://doaj.org/article/901fd009c080465888a277e5bcd14b8c
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Neurologia medico-chirurgica, 2024/02/15, Vol.64(2), pp.71-86
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3dbtMwFMctuiskhEB8BcbkCy4AKWuTOImDuKB0nXZTQCuTuLNi-5htWpNqbZ9hD7BrXo4n4RznY7TiiptIje18nRP7f-rjXxh7A4V0xhIKMdEYoOQjCEuXZaETuYOosFr75WIn8_zLD3k0JUxO1q2F8Un7Rl8cVleLw-ri3OdWLhdm2OWJDb_NJgSzlAJD-QEboDjcidFjIUUi053ffRhGKB8_t4AXFkqUF81cJ0rzbHhZrcJqQWTDmLKMImKKYm0cJD1F8W7g8nx_HLQuUcLR2vwHi2ZapcFb_Eut7iZd_jWKHT9iD1v5ycfNbT5m96B6wn6drcBtrqjT47Xjp7WusZjP8ZFDvfarqDiakZQmugh_e_p1Pv59e_OOHwH1Mxx1b1u5_agO9RbL87LDYfNps9sCJxhx2ax2qj7wMZ_3IGnezFLwsrJ8BusyLFtcylN2djz9PjkJ2882hAblyTostUsyO9JGJ5A454oSMohSdBZXoNojgH8ap4kuosIQHlAIiIwGiBwktsCR9Bnbq-oKXjCegIkzY11RgMY4SZQyh1w4PbKjVIIcBex9ZxO1bOgcCqMasqVCWyq0pSJbKrJlwD6T1fqKBNb2O-rrn6p1L4XyyFnUnQRgF6jOpCzjPIdUGxsJLU3APjY27w_TtaRzZULFftOdsy-lNXTYEQXs05anqLbHWCk8PhFMgdoK5SdYYwK3KhKBiiJPIs2JLA7Yfudcd63jIs1JHAosft74WX-BnQMHTG554NaD2C7BF8-TxrsX7eX_N33F7tMdUaJ7lO6zvfX1Bl6zwcpuDvz_H7idTmYH_hX-AxHSSYI
link.rule.ids 230,315,729,782,786,866,887,2106,27933,27934,53800,53802
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3LbtQwFIYtWhYgIS7iFijgBQtASicXJ3EQC4Z2qkF0Cuq0Ejsrdo5pq04y6sw8Aw_AmpfjSTjHuZSpWHUz0sRxbv5j_0c-_sLYa8ilNSWhEGONAUoWgF_YNPWtyCyEeam1Wy42nmYH3-XuiDA5abcWxiXtG326XZ3PtqvTE5dbOZ-ZQZcnNvg22SGYpRQYym-wm_jCBsGVKD0SUsQyufK_D8QI5uNmF_DSfIkGo5ntRHOeDs6qhV_NiG0YUZ5RSFRR3BuHScdRvBy6HOEfh60zNHG0Ov_OrJlYaQAX__OrV9Mu_xnH9u5d9wncZ3db58qHTfkDdgOqh-z38QLs6pz6S15bfljrGov5FFsL6qVbgMVRAWRSUV38zeHX6fDPr59v-S5QF8XRMrc7t9_joY5mflJ0JG0-ajaXwIljXDQLpar3fMinPYOaNxMcvKhKPoFl4RctaeURO94bHe2M_faLD75BZ7P0C23jtAy00THE1tq8gBTCBHVmczSKxP5PoiTWeZgbIgsKAaHRAKGFuMxxEH7MNqu6gqeMx2Ci1JQ2z0FjiCUKmUEmrA7KIJEgA4-96xpTzRuwh8KAiESgUAQKRaBIBIpE4LFP1Nz9jsTkdhvqix-qbReFzsqWaFmJ3S7Q2ElZRFkGiTZlKLQ0HvvQiKU_TFeTzpUKFbmf7px9KS2_wz7MYx_XJKbazmah8PgEPwWqK5Sbm42I-arIPyoKWglSJ9LIY1udKi9rR3mSka8UWPykEWh_gZ3yPSbXpLv2INZLULEOUt4p9Nn1q75it8ZHk321__ngy3N2m-6O8uXDZIttLi9W8IJtLMrVS_fu_wVmcV1T
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtQwELVokRAS4iJugQJ-4AGQ0s3FSZyKB5ZuV0XQUnWpxJsVx2PaqpusurvfwAfwzM_xJcw4l7IrnuBlpY3t3HziOaOZOWbsJeTSloakEGONDkoWgF_YNPWtyCyEudHalYvtT7LDr3K0RzI5O10tjEvaL_XZdnUx3a7OTl1u5WxaDro8scHRwS6JWUqBrvzM2MEGu44fbRCteeqRkCKWydr_3hkjQR8XYcDb8yWSjCbiiQQ9HZxXc7-akr5hRLlGISmLYm80lU5L8cp8OZV_NF3nSOSoQv_WtAmuNCIXf-Os66mXf9iy8Z3_eQt32e2WwfJh0-ceuwbVffbzZA52eUHrJq8tP651jc18grMG9cIVYnFEApFVRBl_dfx5Mvz14_trPgJaqjhS57Zzuy8PLTiz06JT1OZ7zWEDnPSMi6ZgqtrhQz7ptah5E-jgRWX4ASwKv2gVVx6wk_Hel919v935wS-R4Sz8Qts4NYEudQyxtTYvIIUwQbzZHAkj7QGQREms8zAvSWFQCAhLDRBaiE2Oxvgh26zqCh4zHkMZpaWxeQ4aXS1RyAwyYXVggkSCDDz2pptQNWsEPhQ6RgQEhUBQCARFQFAEBI-9pynvO5I2tztQX35T7dwoZFjWIHUlDXeBBE_KIsoySHRpQqFl6bG3DWD603Qj6VqpUJH76a7Zt1IZHq5lHnu3AjPVLjpzhecnEVSgsUK5GG1E2q-KeKQi55XE6kQaeWyrQ-bV6ChPMuKXApsfNSDtb7BDv8fkCnxXXsRqC6LWiZV3KH3y70NfsBtHo7H69OHw41N2kx6O0ubDZIttLi6X8IxtzM3yufv8fwMuKV_T
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Usefulness+of+Robotic+Stereotactic+Assistance+%28ROSA%C2%AE%29+Device+for+Stereoelectroencephalography+Electrode+Implantation%3A+A+Systematic+Review+and+Meta-analysis&rft.jtitle=Neurologia+medico-chirurgica&rft.au=KAEWBORISUTSAKUL%2C+Anukoon&rft.au=CHERNOV%2C+Mikhail&rft.au=YOKOSAKO%2C+Suguru&rft.au=KUBOTA%2C+Yuichi&rft.date=2024-02-15&rft.pub=Japan+Science+and+Technology+Agency&rft.issn=0470-8105&rft.eissn=1349-8029&rft.volume=64&rft.issue=2&rft_id=info:doi/10.2176%2Fjns-nmc.2023-0119&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0470-8105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0470-8105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0470-8105&client=summon