Usefulness of Robotic Stereotactic Assistance (ROSA®) Device for Stereoelectroencephalography Electrode Implantation: A Systematic Review and Meta-analysis
The aim of this study was to systematically review and meta-analyze the efficiency and safety of using the Robotic Stereotactic Assistance (ROSA®) device (Zimmer Biomet; Warsaw, IN, USA) for stereoelectroencephalography (SEEG) electrode implantation in patients with drug-resistant epilepsy. Based on...
Saved in:
Published in: | Neurologia Medico-Chirurgica Vol. 64; no. 2; pp. 71 - 86 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Japan
The Japan Neurosurgical Society
15-02-2024
THE JAPAN NEUROSURGICAL SOCIETY Japan Science and Technology Agency |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The aim of this study was to systematically review and meta-analyze the efficiency and safety of using the Robotic Stereotactic Assistance (ROSA®) device (Zimmer Biomet; Warsaw, IN, USA) for stereoelectroencephalography (SEEG) electrode implantation in patients with drug-resistant epilepsy. Based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, a literature search was carried out. Overall, 855 nonduplicate relevant articles were determined, and 15 of them were selected for analysis. The benefits of the ROSA® device use in terms of electrode placement accuracy, as well as operative time length, perioperative complications, and seizure outcomes, were evaluated. Studies that were included reported on a total of 11,257 SEEG electrode implantations. The limited number of comparative studies hindered the comprehensive evaluation of the electrode implantation accuracy. Compared with frame-based or navigation-assisted techniques, ROSA®-assisted SEEG electrode implantation provided significant benefits for reduction of both overall operative time (mean difference [MD], −63.45 min; 95% confidence interval [CI] from −88.73 to −38.17 min; P < 0.00001) and operative time per implanted electrode (MD, −8.79 min; 95% CI from −14.37 to −3.21 min; P = 0.002). No significant differences existed in perioperative complications and seizure outcomes after the application of the ROSA® device and other techniques for electrode implantation. To conclude, the available evidence shows that the ROSA® device is an effective and safe surgical tool for trajectory-guided SEEG electrode implantation in patients with drug-resistant epilepsy, offering benefits for saving operative time and neither increasing the risk of perioperative complications nor negatively impacting seizure outcomes. |
---|---|
AbstractList | The aim of this study was to systematically review and meta-analyze the efficiency and safety of using the Robotic Stereotactic Assistance (ROSA
Ⓡ
) device (Zimmer Biomet; Warsaw, IN, USA) for stereoelectroencephalography (SEEG) electrode implantation in patients with drug-resistant epilepsy. Based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, a literature search was carried out. Overall, 855 nonduplicate relevant articles were determined, and 15 of them were selected for analysis. The benefits of the ROSA
Ⓡ
device use in terms of electrode placement accuracy, as well as operative time length, perioperative complications, and seizure outcomes, were evaluated. Studies that were included reported on a total of 11,257 SEEG electrode implantations. The limited number of comparative studies hindered the comprehensive evaluation of the electrode implantation accuracy. Compared with frame-based or navigation-assisted techniques, ROSA
Ⓡ
-assisted SEEG electrode implantation provided significant benefits for reduction of both overall operative time (mean difference [MD], −63.45 min; 95% confidence interval [CI] from −88.73 to −38.17 min; P < 0.00001) and operative time per implanted electrode (MD, −8.79 min; 95% CI from −14.37 to −3.21 min; P = 0.002). No significant differences existed in perioperative complications and seizure outcomes after the application of the ROSA
Ⓡ
device and other techniques for electrode implantation. To conclude, the available evidence shows that the ROSA
Ⓡ
device is an effective and safe surgical tool for trajectory-guided SEEG electrode implantation in patients with drug-resistant epilepsy, offering benefits for saving operative time and neither increasing the risk of perioperative complications nor negatively impacting seizure outcomes. [Abstract] The aim of this study was to systematically review and meta-analyze the efficiency and safety of using the Robotic Stereotactic Assistance (ROSA(R)) device (Zimmer Biomet; Warsaw, IN, USA) for stereoelectroencephalography (SEEG) electrode implantation in patients with drug-resistant epilepsy. Based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, a literature search was carried out. Overall, 855 nonduplicate relevant articles were determined, and 15 of them were selected for analysis. The benefits of the ROSA(R) device use in terms of electrode placement accuracy, as well as operative time length, perioperative complications, and seizure outcomes, were evaluated. Studies that were included reported on a total of 11,257 SEEG electrode implantations. The limited number of comparative studies hindered the comprehensive evaluation of the electrode implantation accuracy. Compared with frame-based or navigation-assisted techniques, ROSA(R)-assisted SEEG electrode implantation provided significant benefits for reduction of both overall operative time (mean difference [MD], -63.45 min; 95% confidence interval [CI] from -88.73 to -38.17 min; P < 0.00001) and operative time per implanted electrode (MD, -8.79 min; 95% CI from -14.37 to -3.21 min; P = 0.002). No significant differences existed in perioperative complications and seizure outcomes after the application of the ROSA(R) device and other techniques for electrode implantation. To conclude, the available evidence shows that the ROSA(R) device is an effective and safe surgical tool for trajectory-guided SEEG electrode implantation in patients with drug-resistant epilepsy, offering benefits for saving operative time and neither increasing the risk of perioperative complications nor negatively impacting seizure outcomes. The aim of this study was to systematically review and meta-analyze the efficiency and safety of using the Robotic Stereotactic Assistance (ROSA ) device (Zimmer Biomet; Warsaw, IN, USA) for stereoelectroencephalography (SEEG) electrode implantation in patients with drug-resistant epilepsy. Based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, a literature search was carried out. Overall, 855 nonduplicate relevant articles were determined, and 15 of them were selected for analysis. The benefits of the ROSA device use in terms of electrode placement accuracy, as well as operative time length, perioperative complications, and seizure outcomes, were evaluated. Studies that were included reported on a total of 11,257 SEEG electrode implantations. The limited number of comparative studies hindered the comprehensive evaluation of the electrode implantation accuracy. Compared with frame-based or navigation-assisted techniques, ROSA -assisted SEEG electrode implantation provided significant benefits for reduction of both overall operative time (mean difference [MD], -63.45 min; 95% confidence interval [CI] from -88.73 to -38.17 min; P < 0.00001) and operative time per implanted electrode (MD, -8.79 min; 95% CI from -14.37 to -3.21 min; P = 0.002). No significant differences existed in perioperative complications and seizure outcomes after the application of the ROSA device and other techniques for electrode implantation. To conclude, the available evidence shows that the ROSA device is an effective and safe surgical tool for trajectory-guided SEEG electrode implantation in patients with drug-resistant epilepsy, offering benefits for saving operative time and neither increasing the risk of perioperative complications nor negatively impacting seizure outcomes. The aim of this study was to systematically review and meta-analyze the efficiency and safety of using the Robotic Stereotactic Assistance (ROSAⓇ) device (Zimmer Biomet; Warsaw, IN, USA) for stereoelectroencephalography (SEEG) electrode implantation in patients with drug-resistant epilepsy. Based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, a literature search was carried out. Overall, 855 nonduplicate relevant articles were determined, and 15 of them were selected for analysis. The benefits of the ROSAⓇ device use in terms of electrode placement accuracy, as well as operative time length, perioperative complications, and seizure outcomes, were evaluated. Studies that were included reported on a total of 11,257 SEEG electrode implantations. The limited number of comparative studies hindered the comprehensive evaluation of the electrode implantation accuracy. Compared with frame-based or navigation-assisted techniques, ROSAⓇ-assisted SEEG electrode implantation provided significant benefits for reduction of both overall operative time (mean difference [MD], −63.45 min; 95% confidence interval [CI] from −88.73 to −38.17 min; P < 0.00001) and operative time per implanted electrode (MD, −8.79 min; 95% CI from −14.37 to −3.21 min; P = 0.002). No significant differences existed in perioperative complications and seizure outcomes after the application of the ROSAⓇ device and other techniques for electrode implantation. To conclude, the available evidence shows that the ROSAⓇ device is an effective and safe surgical tool for trajectory-guided SEEG electrode implantation in patients with drug-resistant epilepsy, offering benefits for saving operative time and neither increasing the risk of perioperative complications nor negatively impacting seizure outcomes. The aim of this study was to systematically review and meta-analyze the efficiency and safety of using the Robotic Stereotactic Assistance (ROSA®) device (Zimmer Biomet; Warsaw, IN, USA) for stereoelectroencephalography (SEEG) electrode implantation in patients with drug-resistant epilepsy. Based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, a literature search was carried out. Overall, 855 nonduplicate relevant articles were determined, and 15 of them were selected for analysis. The benefits of the ROSA® device use in terms of electrode placement accuracy, as well as operative time length, perioperative complications, and seizure outcomes, were evaluated. Studies that were included reported on a total of 11,257 SEEG electrode implantations. The limited number of comparative studies hindered the comprehensive evaluation of the electrode implantation accuracy. Compared with frame-based or navigation-assisted techniques, ROSA®-assisted SEEG electrode implantation provided significant benefits for reduction of both overall operative time (mean difference [MD], −63.45 min; 95% confidence interval [CI] from −88.73 to −38.17 min; P < 0.00001) and operative time per implanted electrode (MD, −8.79 min; 95% CI from −14.37 to −3.21 min; P = 0.002). No significant differences existed in perioperative complications and seizure outcomes after the application of the ROSA® device and other techniques for electrode implantation. To conclude, the available evidence shows that the ROSA® device is an effective and safe surgical tool for trajectory-guided SEEG electrode implantation in patients with drug-resistant epilepsy, offering benefits for saving operative time and neither increasing the risk of perioperative complications nor negatively impacting seizure outcomes. |
ArticleNumber | 2023-0119 |
Author | YOKOSAKO, Suguru KAEWBORISUTSAKUL, Anukoon CHERNOV, Mikhail KUBOTA, Yuichi |
Author_xml | – sequence: 1 fullname: KAEWBORISUTSAKUL, Anukoon organization: Neurological Surgery Unit, Division of Surgery, Faculty of Medicine, Prince of Songkla University – sequence: 2 fullname: CHERNOV, Mikhail organization: Department of Neurosurgery, Tokyo Women's Medical University Adachi Medical Center – sequence: 3 fullname: YOKOSAKO, Suguru organization: Department of Neurosurgery, Tokyo Women's Medical University Adachi Medical Center – sequence: 4 fullname: KUBOTA, Yuichi organization: Department of Neurosurgery, Tokyo Women's Medical University Adachi Medical Center |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38220166$$D View this record in MEDLINE/PubMed |
BookMark | eNpVUstuEzEUHaEiGko_gA0aiQ0spvg1MzYbFIVSIhVVSuja8niuk4kmdrCdovwL38BH8GV4mgd0Y8u-555zrn1eZmfWWciy1xhdEVxXH1Y2FHatrwgitEAYi2fZCFMmCo6IOMtGiNWo4BiV59llCF2DEGGcUV6_yM4pJwThqhplv-4DmG1vIYTcmXzmGhc7nc8jeHBR6eEwTu0hKqshfze7m4___H6ff4aHLp2N8wcs9KCjd5BQm6Xq3cKrzXKXX--vW8in602vbFSxc_ZjPs7nuxBhrQaBWSKDn7mybf4NoiqUVf0uab7KnhvVB7g87BfZ_Zfr75Ovxe3dzXQyvi10zXAsVGNo1aJGNxSoMUYoqACXDWgjyjQoZ7wkJW0EFprjGjEGWDcA2ABtBSb0IpvueVunVnLju7XyO-lUJx8vnF9I5ZPRHqRA2LQICY04YlXJOVekrqFsdItZw3Xi-rTn2mybNbQabPSqf0L6tGK7pVy4B4mRwJyVdWJ4e2Dw7scWQpQrt_XpSYIkoqxRmpkNnvEepb0LwYM5SWAkh4DIFBCZAiKHgMghIKnnzf_eTh3HOCTAzR6Qqp1Ov2j7zsI__TSkha2HgZNJhCqGSNoSPapxWnjFKCWsGuxN9kyrlJwFnKSO7zgYq5gkj8vR4Kmql8pLsPQvtLTsVA |
CitedBy_id | crossref_primary_10_1080_02656736_2024_2364721 |
Cites_doi | 10.1016/j.wneu.2020.04.218 10.1212/WNL.0000000000003509 10.1007/s10143-020-01445-6 10.3171/2021.10.FOCUS21533 10.3171/2018.5.PEDS17718 10.1093/neuros/nyy466 10.1016/j.neuchi.2017.03.002 10.3171/2018.7.PEDS18305 10.1007/s00381-021-05107-w 10.3171/2018.7.JNS181164 10.1046/j.1445-2197.2003.02748.x 10.1227/NEU.0000000000001034 10.3171/2018.10.PEDS18227 10.1093/ons/opz281 10.1111/epi.13298 10.1038/s41598-021-96662-4 10.3171/2018.1.PEDS17435 10.3390/children7080094 10.1371/journal.pmed.1003583 10.1093/neuros/nyaa428 10.1093/neuros/nyx576 10.1016/j.eplepsyres.2019.106253 10.1159/000503831 10.1111/j.1528-1167.2012.03672.x 10.1227/NEU.0b013e31827d1161 10.1002/rcs.1888 10.1093/ons/opab217 10.1111/epi.13713 10.3171/2022.5.JNS22804 10.1016/j.yebeh.2018.11.002 10.1111/epi.14596 10.3171/2017.2.FOCUS16579 10.1891/9780826136930.0001 10.1093/neuros/nyy261 10.1007/s11701-022-01504-8 10.3171/2020.5.JNS20975 10.3171/2020.10.JNS201843 10.1093/brain/124.9.1683 10.2176/jns-nmc.2022-0010 10.2176/jns-nmc.2022-0271 10.1016/j.neucli.2020.11.001 10.3171/2014.7.JNS132306 10.1111/epi.13515 10.1007/s10143-022-01908-y 10.21037/apm-20-2123 10.1093/neuros/nyz498 10.1002/epi4.12535 10.1001/jamaneurol.2019.0098 |
ContentType | Journal Article |
Copyright | 2024 The Japan Neurosurgical Society 2024. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 The Japan Neurosurgical Society – notice: 2024. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
CorporateAuthor | Tokyo Women's Medical University Adachi Medical Center Neurological Surgery Unit Department of Neurosurgery Prince of Songkla University Faculty of Medicine Division of Surgery |
CorporateAuthor_xml | – name: Division of Surgery – name: Faculty of Medicine – name: Department of Neurosurgery – name: Prince of Songkla University – name: Tokyo Women's Medical University Adachi Medical Center – name: Neurological Surgery Unit |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7TK 5PM DOA |
DOI | 10.2176/jns-nmc.2023-0119 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Neurosciences Abstracts PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Neurosciences Abstracts |
DatabaseTitleList | MEDLINE Neurosciences Abstracts |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1349-8029 |
EndPage | 86 |
ExternalDocumentID | oai_doaj_org_article_901fd009c080465888a277e5bcd14b8c 10_2176_jns_nmc_2023_0119 38220166 cd1neure_2024_006402_003_0071_00864332462 article_nmc_64_2_64_2023_0119_article_char_en |
Genre | Meta-Analysis Systematic Review Journal Article |
GroupedDBID | --- .55 .GJ 123 29N 2WC 53G ACPRK ADBBV AENEX ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BKOMP CS3 DIK DU5 E3Z F5P GROUPED_DOAJ GX1 HYE JMI JSF JSH KQ8 MOJWN M~E OK1 P6G RJT RNS RPM RZJ TR2 X7M PGMZT CGR CUY CVF ECM EIF NPM AAYXX CITATION 7TK 5PM |
ID | FETCH-LOGICAL-c741t-abf36d0bcb3e3fff9ae6e15becf952208485253b919c817044e1cbee1fe3d9123 |
IEDL.DBID | RPM |
ISSN | 0470-8105 |
IngestDate | Tue Oct 22 15:15:10 EDT 2024 Tue Sep 17 21:29:16 EDT 2024 Thu Oct 10 20:41:50 EDT 2024 Fri Aug 23 03:02:11 EDT 2024 Sat Nov 02 12:30:49 EDT 2024 Fri Nov 08 06:53:25 EST 2024 Thu Mar 07 14:25:18 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | epilepsy Robotic Stereotactic Assistance (ROSA®) stereoelectroencephalography depth electrode implantation efficacy |
Language | English |
License | This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives International License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c741t-abf36d0bcb3e3fff9ae6e15becf952208485253b919c817044e1cbee1fe3d9123 |
Notes | Department of Neurosurgery, Tokyo Women's Medical University Adachi Medical Center, 4-33-1 Kohoku, Adachi-ku, Tokyo 123-8558, Japan. e-mail: Kubota.Yuichi@twmu.ac.jp Corresponding author: Yuichi Kubota, M.D., Ph.D. |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10918457/ |
PMID | 38220166 |
PQID | 2957074142 |
PQPubID | 2048494 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_901fd009c080465888a277e5bcd14b8c pubmedcentral_primary_oai_pubmedcentral_nih_gov_10918457 proquest_journals_2957074142 crossref_primary_10_2176_jns_nmc_2023_0119 pubmed_primary_38220166 medicalonline_journals_cd1neure_2024_006402_003_0071_00864332462 jstage_primary_article_nmc_64_2_64_2023_0119_article_char_en |
PublicationCentury | 2000 |
PublicationDate | 2024-Feb-15 |
PublicationDateYYYYMMDD | 2024-02-15 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-Feb-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan – name: Tokyo |
PublicationTitle | Neurologia Medico-Chirurgica |
PublicationTitleAlternate | Neurol. Med. Chir.(Tokyo) |
PublicationYear | 2024 |
Publisher | The Japan Neurosurgical Society THE JAPAN NEUROSURGICAL SOCIETY Japan Science and Technology Agency |
Publisher_xml | – name: The Japan Neurosurgical Society – name: THE JAPAN NEUROSURGICAL SOCIETY – name: Japan Science and Technology Agency |
References | 23) Slim K, Nini E, Forestier D, Kwiatkowski F, Panis Y, Chipponi J: Methodological index for non-randomized studies (MINORS): development and validation of a new instrument. ANZ J Surg 73: 712-716, 2003 21) Miller C, Schatmeyer B, Landazuri P, et al.: sEEG for expansion of a surgical epilepsy program: safety and efficacy in 152 consecutive cases. Epilepsia Open 6: 694-702, 2021 3) Kalilani L, Sun X, Pelgrims B, Noack-Rink M, Villanueva V: The epidemiology of drug-resistant epilepsy: a systematic review and meta-analysis. Epilepsia 59: 2179-2193, 2018 18) Abel TJ, Varela Osorio R, Amorim-Leite R, et al.: Frameless robot-assisted stereoelectroencephalography in children: technical aspects and comparison with Talairach frame technique. J Neurosurg Pediatr 22: 37-46, 2018 44) Bonda DJ, Pruitt R, Goldstein T, et al.: Robotic surgical assistant (ROSA™) rehearsal: using 3-dimensional printing technology to facilitate the introduction of stereotactic robotic neurosurgical equipment. Oper Neurosurg (Hagerstown) 19: 94-97, 2020 26) Zhao R, Xue P, Zhou Y, et al.: Application of robot-assisted frameless stereoelectroencephalography based on multimodal image guidance in pediatric refractory epilepsy: experience of a pediatric center in a developing country. World Neurosurg 140: e161-e168, 2020 6) Isnard J, Taussig D, Bartolomei F, et al.: French guidelines on stereoelectroencephalography (SEEG). Neurophysiol Clin 48: 5-13, 2018 10) Serletis D, Bulacio J, Bingaman W, Najm I, González-Martínez J: The stereotactic approach for mapping epileptic networks: a prospective study of 200 patients. J Neurosurg 121: 1239-1246, 2014 39) Vakharia VN, Sparks R, O'Keeffe AG, et al.: Accuracy of intracranial electrode placement for stereoelectroencephalography: a systematic review and meta-analysis. Epilepsia 58: 921-932, 2017 13) Rollo PS, Rollo MJ, Zhu P, Woolnough O, Tandon N: Oblique trajectory angles in robotic stereo-electroencephalography. J Neurosurg 135: 245-254, 2020 42) Vakharia VN, Rodionov R, Miserocchi A, et al.: Comparison of robotic and manual implantation of intracerebral electrodes: a single-centre, single-blinded, randomised controlled trial. Sci Rep 11: 17127, 2021 40) Philipp LR, Matias CM, Thalheimer S, Mehta SH, Sharan A, Wu C: Robot-assisted stereotaxy reduces target error: a meta-analysis and meta-regression of 6056 trajectories. Neurosurgery 88: 222-233, 2021 27) Zheng J, Liu Y, Zhang D, et al.: Robot-assisted versus stereotactic frame-based stereoelectroencephalography in medically refractory epilepsy. Neurophysiol Clin 51: 111-119, 2021 41) Cardinale F, Cossu M, Castana L, et al.: Stereoelectroencephalography: surgical methodology, safety, and stereotactic application accuracy in 500 procedures. Neurosurgery 72: 353-366, 2013 12) Tandon N, Tong BA, Friedman ER, et al.: Analysis of morbidity and outcomes associated with use of subdural grids vs stereoelectroencephalography in patients with intractable epilepsy. JAMA Neurol 76: 672-681, 2019 15) Kojima Y, Uda T, Kawashima T, et al.: Primary experiences with robot-assisted navigation-based frameless stereo-electroencephalography: higher accuracy than neuronavigation-guided manual adjustment. Neurol Med Chir (Tokyo) 62: 361-368, 2022 29) De Benedictis A, Trezza A, Carai A, et al.: Robot-assisted procedures in pediatric neurosurgery. Neurosurg Focus 42 (5): E7, 2017 47) McGovern RA, Butler RS, Bena J, Gonzalez-Martinez J: Incorporating new technology into a surgical technique: the learning curve of a single surgeon's stereo-electroencephalography experience. Neurosurgery 86: E281-E289, 2020 2) Beghi E: The epidemiology of epilepsy. Neuroepidemiology 54: 185-191, 2020 8) Mullin JP, Shriver M, Alomar S, et al.: Is SEEG safe? A systematic review and meta-analysis of stereo-electroencephalography-related complications. Epilepsia 57: 386-401, 2016 9) Garcia-Lorenzo B, del Pino-Sedeño T, Rocamora R, López JE, Serrano-Aguilar P, Trujillo-Martín MM: Stereoelectroencephalography for refractory epileptic patients considered for surgery: systematic review, meta-analysis, and economic evaluation. Neurosurgery 84: 326-338, 2019 16) Maesawa S, Ishizaki T, Mutoh M, et al.: Clinical impacts of stereotactic electroencephalography on epilepsy surgery and associated issues in the current situation in Japan. Neurol Med Chir (Tokyo) 63: 179-190, 2023 43) Hines K, Matias CM, Leibold A, Sharan A, Wu C: Accuracy and efficiency using frameless transient fiducial registration in stereoelectroencephalography and deep brain stimulation. J Neurosurg 138: 299-305, 2023 49) Vilanilam GC, Venkat EH: Ethical nuances and medicolegal vulnerabilities in robotic neurosurgery. Neurosurg Focus 52 (1): E2, 2022 46) Sacino MF, Huang SS, Schreiber J, Gaillard WD, Oluigbo CO: Is the use of stereotactic electroencephalography safe and effective in children? A meta-analysis of the use of stereotactic electroencephalography in comparison to subdural grids for invasive epilepsy monitoring in pediatric subjects. Neurosurgery 84: 1190-1200, 2019 25) Sharma JD, Seunarine KK, Tahir MZ, Tisdall MM: Accuracy of robot-assisted versus optical frameless navigated stereoelectroencephalography electrode placement in children. J Neurosurg Pediatr 23: 297-302, 2019 7) Chauvel P: The history and principles of stereo EEG, in Schuele SU (ed): A Practical Approach to Stereo EEG. New York, Demos Medical Publishing, Springer Publishing Company, LLC, 2021, pp 3-11 4) Rosenow F, Lüders H: Presurgical evaluation of epilepsy. Brain 124: 1683-1700, 2001 24) Bourdillon P, Châtillon CE, Moles A, et al.: Effective accuracy of stereoelectroencephalography: robotic 3D versus Talairach orthogonal approaches. J Neurosurg 131: 1938-1946, 2018 30) Ollivier I, Behr C, Cebula H, et al.: Efficacy and safety in frameless robot-assisted stereo-electroencephalography (SEEG) for drug-resistant epilepsy. Neurochirurgie 63: 286-290, 2017 20) Machetanz K, Grimm F, Wuttke T, et al.: Frame-based and robot-assisted insular stereo-electroencephalography via an anterior or posterior oblique approach. J Neurosurg 135: 1477-1486, 2021 48) Shlobin NA, Huang J, Wu C: Learning curves in robotic neurosurgery: a systematic review. Neurosurg Rev 46: 14, 2023 19) Kim LH, Feng AY, Ho AL, et al.: Robot-assisted versus manual navigated stereoelectroencephalography in adult medically-refractory epilepsy patients. Epilepsy Res 159: 106253, 2020 11) Fomenko A, Serletis D: Robotic stereotaxy in cranial neurosurgery: a qualitative systematic review. Neurosurgery 83: 642-650, 2018 33) Spyrantis A, Cattani A, Strzelczyk A, Rosenow F, Seifert V, Freiman TM: Robot-guided stereoelectroencephalography without a computed tomography scan for referencing: analysis of accuracy. Int J Med Robot 14: e1888, 2018 1) Fiest KM, Sauro KM, Wiebe S, et al.: Prevalence and incidence of epilepsy: a systematic review and meta-analysis of international studies. Neurology 88: 296-303, 2017 36) Bonda DJ, Pruitt R, Theroux L, et al.: Robot-assisted stereoelectroencephalography electrode placement in twenty-three pediatric patients: a high-resolution analysis of individual lead placement time and accuracy at a single institution. Childs Nerv Syst 37: 2251-2259, 2021 5) Gonzalez-Martinez J, Bulacio J, Alexopoulos A, Jehi L, Bingaman W, Najm I: Stereoelectroencephalography in the "difficult to localize" refractory focal epilepsy: early experience from a North American epilepsy center. Epilepsia 54: 323-330, 2013 38) Jayakar P, Gotman J, Harvey AS, et al.: Diagnostic utility of invasive EEG for epilepsy surgery: indications, modalities, and techniques. Epilepsia 57: 1735-1747, 2016 35) Nelson JH, Brackett SL, Oluigbo CO, Reddy SK: Robotic stereotactic assistance (ROSA) for pediatric epilepsy: a single-center experience of 23 consecutive cases. Children (Basel) 7 (8): 94, 2020 45) Ball T, González-Martínez J, Zemmar A, et al.: Robotic applications in cranial neurosurgery: current and future. Oper Neurosurg (Hagerstown) 21: 371-379, 2021 17) González-Martínez J, Bulacio J, Thompson S, et al.: Technique, results, and complications related to robot-assisted stereoelectroencephalography. Neurosurgery 78: 169-180, 2016 32) McGovern RA, Knight EP, Gupta A, et al.: Robot-assisted stereoelectroencephalography in children. J Neurosurg Pediatr 23: 288-296, 2019 31) Ho AL, Muftuoglu Y, Pendharkar AV, et al.: Robot-guided pediatric stereoelectroencephalography: single-institution experience. J Neurosurg Pediatr 22: 1-8, 2018 14) Stumpo V, Staartjes VE, Klukowska AM, et al.: Global adoption of robotic technology into neurosurgical practice and research. Neurosurg Rev 44: 2675-2687, 2021 34) Spyrantis A, Cattani A, Woebbecke T, et al.: Electrode placement accuracy in robot-assisted epilepsy surgery: a comparison of different referencing techniques including frame-based CT versus facial laser scan based on CT or MRI. Epilepsy Behav 91: 38-47, 2019 22) Page MJ, McKenzie JE, Bossuyt PM, et al.: The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. PLoS Med 18: e1003583, 2021 28) Yao Y, Hu W, Zhang C, et al.: A comparison between robot-guided and stereotactic frame-based stereoelectroencephalography (SEEG) electrode implantation for drug-resistant epilepsy. J Robot Surg 17: 1013-1020, 2023 37) Lu C, Chen S, An Y, et al.: How can the accuracy of SEEG be increased? - an analysis of the accuracy of multilobe-spanning SEEG electrodes based on a frameless stereotactic robot-assisted system. Ann Palliat Med 10: 3699-3705, 2021 44 45 46 47 48 49 10 11 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
References_xml | – ident: 26 doi: 10.1016/j.wneu.2020.04.218 – ident: 1 doi: 10.1212/WNL.0000000000003509 – ident: 14 doi: 10.1007/s10143-020-01445-6 – ident: 49 doi: 10.3171/2021.10.FOCUS21533 – ident: 31 doi: 10.3171/2018.5.PEDS17718 – ident: 46 doi: 10.1093/neuros/nyy466 – ident: 30 doi: 10.1016/j.neuchi.2017.03.002 – ident: 32 doi: 10.3171/2018.7.PEDS18305 – ident: 36 doi: 10.1007/s00381-021-05107-w – ident: 24 doi: 10.3171/2018.7.JNS181164 – ident: 23 doi: 10.1046/j.1445-2197.2003.02748.x – ident: 17 doi: 10.1227/NEU.0000000000001034 – ident: 25 doi: 10.3171/2018.10.PEDS18227 – ident: 44 doi: 10.1093/ons/opz281 – ident: 8 doi: 10.1111/epi.13298 – ident: 42 doi: 10.1038/s41598-021-96662-4 – ident: 18 doi: 10.3171/2018.1.PEDS17435 – ident: 35 doi: 10.3390/children7080094 – ident: 22 doi: 10.1371/journal.pmed.1003583 – ident: 40 doi: 10.1093/neuros/nyaa428 – ident: 11 doi: 10.1093/neuros/nyx576 – ident: 19 doi: 10.1016/j.eplepsyres.2019.106253 – ident: 2 doi: 10.1159/000503831 – ident: 5 doi: 10.1111/j.1528-1167.2012.03672.x – ident: 41 doi: 10.1227/NEU.0b013e31827d1161 – ident: 33 doi: 10.1002/rcs.1888 – ident: 45 doi: 10.1093/ons/opab217 – ident: 39 doi: 10.1111/epi.13713 – ident: 43 doi: 10.3171/2022.5.JNS22804 – ident: 34 doi: 10.1016/j.yebeh.2018.11.002 – ident: 3 doi: 10.1111/epi.14596 – ident: 29 doi: 10.3171/2017.2.FOCUS16579 – ident: 7 doi: 10.1891/9780826136930.0001 – ident: 9 doi: 10.1093/neuros/nyy261 – ident: 28 doi: 10.1007/s11701-022-01504-8 – ident: 13 doi: 10.3171/2020.5.JNS20975 – ident: 20 doi: 10.3171/2020.10.JNS201843 – ident: 4 doi: 10.1093/brain/124.9.1683 – ident: 15 doi: 10.2176/jns-nmc.2022-0010 – ident: 16 doi: 10.2176/jns-nmc.2022-0271 – ident: 27 doi: 10.1016/j.neucli.2020.11.001 – ident: 10 doi: 10.3171/2014.7.JNS132306 – ident: 38 doi: 10.1111/epi.13515 – ident: 48 doi: 10.1007/s10143-022-01908-y – ident: 37 doi: 10.21037/apm-20-2123 – ident: 47 doi: 10.1093/neuros/nyz498 – ident: 6 – ident: 21 doi: 10.1002/epi4.12535 – ident: 12 doi: 10.1001/jamaneurol.2019.0098 |
SSID | ssib002484387 ssj0037382 ssib002484385 ssib042166867 ssib023157258 ssib000959794 ssib023157257 ssib044754309 |
Score | 2.391785 |
SecondaryResourceType | review_article |
Snippet | The aim of this study was to systematically review and meta-analyze the efficiency and safety of using the Robotic Stereotactic Assistance (ROSA®) device... [Abstract] The aim of this study was to systematically review and meta-analyze the efficiency and safety of using the Robotic Stereotactic Assistance (ROSA(R))... The aim of this study was to systematically review and meta-analyze the efficiency and safety of using the Robotic Stereotactic Assistance (ROSA ) device... The aim of this study was to systematically review and meta-analyze the efficiency and safety of using the Robotic Stereotactic Assistance (ROSA Ⓡ ) device... The aim of this study was to systematically review and meta-analyze the efficiency and safety of using the Robotic Stereotactic Assistance (ROSAⓇ) device... |
SourceID | doaj pubmedcentral proquest crossref pubmed medicalonline jstage |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 71 |
SubjectTerms | Convulsions & seizures depth electrode implantation Drug resistance Drug Resistant Epilepsy - surgery efficacy Electrodes Electrodes, Implanted Electroencephalography - methods Epilepsy Humans Meta-analysis Retrospective Studies Review Robotic Stereotactic Assistance (ROSA®) robotic stereotactic assistance (rosaⓡ) Robotic Surgical Procedures - methods Seizures stereoelectroencephalography Stereotaxic Techniques |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3NbtQwEMct6AkJIRBfgYJ84ABIUfPh-ANxYKFb9QJIXSpxs-x4rFLRpGJ3n4EH4MzL8STMxNmwWyFx4RJp4zjZeCYzf8v2z4w9A6NjGwiFWHvsoKgCchelzKNQEUoTvB-Wix0v1IfP-nBOmJxpqy-aE5bwwKnhDjBfxYBCgIjYAtOl1q5SChrfhlJ43Q7Rt5BbnamUeLSodXPlt0rDmqjC5cF5t8y7C4IYVjShiEg7W4lp4PdjUjpHiUZr729epGGThK_4mxq9OqlyK0sd3Wa3RnnJZ-m17rBr0N1lP0-XENdfKajxPvKT3vdYzBfYpNCvhlVSHM1EShJdgD8_-biY_frx_QU_BIojHHXtePG4aQ5Fg8szt8Fd83k6HYATbNil1UzdKz7jiwkUzdMoBHdd4O9h5XI34lDusdOj-ad3x_m4LUPeovxY5c7HWobCt76GOsZoHEgoG3SGaFDNEaC_qZram9K0hP8TAsrWA5QR6mAwU95ne13fwUPGa2gr2YZoDHjsBwmnFSgRfRGKRoMuMvZyYxN7megbFnstZECLBrRoQEsGtGTAjL0lq00XEjh7OIHuZEd3sv9yp4y9TjafbrOpSc-SwlbDYfPMqZTWyGGgydibHU-xY0RYWrw_EUqB6go7DKBWBGa1JPIs9SyJJCdklbH9jXP9qV2ZRpH4E1j8IPnZ9Adr1Hgo3GXG9I4H7jTEbkn35WwgiRMVVotGPfofTfeY3aB3oyntZbPP9lbf1vCEXV-G9dPh4_wNNOFBeg priority: 102 providerName: Directory of Open Access Journals |
Title | Usefulness of Robotic Stereotactic Assistance (ROSA®) Device for Stereoelectroencephalography Electrode Implantation: A Systematic Review and Meta-analysis |
URI | https://www.jstage.jst.go.jp/article/nmc/64/2/64_2023-0119/_article/-char/en http://mol.medicalonline.jp/en/journal/download?GoodsID=cd1neure/2024/006402/003&name=0071-0086e https://www.ncbi.nlm.nih.gov/pubmed/38220166 https://www.proquest.com/docview/2957074142 https://pubmed.ncbi.nlm.nih.gov/PMC10918457 https://doaj.org/article/901fd009c080465888a277e5bcd14b8c |
Volume | 64 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Neurologia medico-chirurgica, 2024/02/15, Vol.64(2), pp.71-86 |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3dbtMwFMctuiskhEB8BcbkCy4AKWuTOImDuKB0nXZTQCuTuLNi-5htWpNqbZ9hD7BrXo4n4RznY7TiiptIje18nRP7f-rjXxh7A4V0xhIKMdEYoOQjCEuXZaETuYOosFr75WIn8_zLD3k0JUxO1q2F8Un7Rl8cVleLw-ri3OdWLhdm2OWJDb_NJgSzlAJD-QEboDjcidFjIUUi053ffRhGKB8_t4AXFkqUF81cJ0rzbHhZrcJqQWTDmLKMImKKYm0cJD1F8W7g8nx_HLQuUcLR2vwHi2ZapcFb_Eut7iZd_jWKHT9iD1v5ycfNbT5m96B6wn6drcBtrqjT47Xjp7WusZjP8ZFDvfarqDiakZQmugh_e_p1Pv59e_OOHwH1Mxx1b1u5_agO9RbL87LDYfNps9sCJxhx2ax2qj7wMZ_3IGnezFLwsrJ8BusyLFtcylN2djz9PjkJ2882hAblyTostUsyO9JGJ5A454oSMohSdBZXoNojgH8ap4kuosIQHlAIiIwGiBwktsCR9Bnbq-oKXjCegIkzY11RgMY4SZQyh1w4PbKjVIIcBex9ZxO1bOgcCqMasqVCWyq0pSJbKrJlwD6T1fqKBNb2O-rrn6p1L4XyyFnUnQRgF6jOpCzjPIdUGxsJLU3APjY27w_TtaRzZULFftOdsy-lNXTYEQXs05anqLbHWCk8PhFMgdoK5SdYYwK3KhKBiiJPIs2JLA7Yfudcd63jIs1JHAosft74WX-BnQMHTG554NaD2C7BF8-TxrsX7eX_N33F7tMdUaJ7lO6zvfX1Bl6zwcpuDvz_H7idTmYH_hX-AxHSSYI |
link.rule.ids | 230,315,729,782,786,866,887,2106,27933,27934,53800,53802 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3LbtQwFIYtWhYgIS7iFijgBQtASicXJ3EQC4Z2qkF0Cuq0Ejsrdo5pq04y6sw8Aw_AmpfjSTjHuZSpWHUz0sRxbv5j_0c-_sLYa8ilNSWhEGONAUoWgF_YNPWtyCyEeam1Wy42nmYH3-XuiDA5abcWxiXtG326XZ3PtqvTE5dbOZ-ZQZcnNvg22SGYpRQYym-wm_jCBsGVKD0SUsQyufK_D8QI5uNmF_DSfIkGo5ntRHOeDs6qhV_NiG0YUZ5RSFRR3BuHScdRvBy6HOEfh60zNHG0Ov_OrJlYaQAX__OrV9Mu_xnH9u5d9wncZ3db58qHTfkDdgOqh-z38QLs6pz6S15bfljrGov5FFsL6qVbgMVRAWRSUV38zeHX6fDPr59v-S5QF8XRMrc7t9_joY5mflJ0JG0-ajaXwIljXDQLpar3fMinPYOaNxMcvKhKPoFl4RctaeURO94bHe2M_faLD75BZ7P0C23jtAy00THE1tq8gBTCBHVmczSKxP5PoiTWeZgbIgsKAaHRAKGFuMxxEH7MNqu6gqeMx2Ci1JQ2z0FjiCUKmUEmrA7KIJEgA4-96xpTzRuwh8KAiESgUAQKRaBIBIpE4LFP1Nz9jsTkdhvqix-qbReFzsqWaFmJ3S7Q2ElZRFkGiTZlKLQ0HvvQiKU_TFeTzpUKFbmf7px9KS2_wz7MYx_XJKbazmah8PgEPwWqK5Sbm42I-arIPyoKWglSJ9LIY1udKi9rR3mSka8UWPykEWh_gZ3yPSbXpLv2INZLULEOUt4p9Nn1q75it8ZHk321__ngy3N2m-6O8uXDZIttLi9W8IJtLMrVS_fu_wVmcV1T |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtQwELVokRAS4iJugQJ-4AGQ0s3FSZyKB5ZuV0XQUnWpxJsVx2PaqpusurvfwAfwzM_xJcw4l7IrnuBlpY3t3HziOaOZOWbsJeTSloakEGONDkoWgF_YNPWtyCyEudHalYvtT7LDr3K0RzI5O10tjEvaL_XZdnUx3a7OTl1u5WxaDro8scHRwS6JWUqBrvzM2MEGu44fbRCteeqRkCKWydr_3hkjQR8XYcDb8yWSjCbiiQQ9HZxXc7-akr5hRLlGISmLYm80lU5L8cp8OZV_NF3nSOSoQv_WtAmuNCIXf-Os66mXf9iy8Z3_eQt32e2WwfJh0-ceuwbVffbzZA52eUHrJq8tP651jc18grMG9cIVYnFEApFVRBl_dfx5Mvz14_trPgJaqjhS57Zzuy8PLTiz06JT1OZ7zWEDnPSMi6ZgqtrhQz7ptah5E-jgRWX4ASwKv2gVVx6wk_Hel919v935wS-R4Sz8Qts4NYEudQyxtTYvIIUwQbzZHAkj7QGQREms8zAvSWFQCAhLDRBaiE2Oxvgh26zqCh4zHkMZpaWxeQ4aXS1RyAwyYXVggkSCDDz2pptQNWsEPhQ6RgQEhUBQCARFQFAEBI-9pynvO5I2tztQX35T7dwoZFjWIHUlDXeBBE_KIsoySHRpQqFl6bG3DWD603Qj6VqpUJH76a7Zt1IZHq5lHnu3AjPVLjpzhecnEVSgsUK5GG1E2q-KeKQi55XE6kQaeWyrQ-bV6ChPMuKXApsfNSDtb7BDv8fkCnxXXsRqC6LWiZV3KH3y70NfsBtHo7H69OHw41N2kx6O0ubDZIttLi6X8IxtzM3yufv8fwMuKV_T |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Usefulness+of+Robotic+Stereotactic+Assistance+%28ROSA%C2%AE%29+Device+for+Stereoelectroencephalography+Electrode+Implantation%3A+A+Systematic+Review+and+Meta-analysis&rft.jtitle=Neurologia+medico-chirurgica&rft.au=KAEWBORISUTSAKUL%2C+Anukoon&rft.au=CHERNOV%2C+Mikhail&rft.au=YOKOSAKO%2C+Suguru&rft.au=KUBOTA%2C+Yuichi&rft.date=2024-02-15&rft.pub=Japan+Science+and+Technology+Agency&rft.issn=0470-8105&rft.eissn=1349-8029&rft.volume=64&rft.issue=2&rft_id=info:doi/10.2176%2Fjns-nmc.2023-0119&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0470-8105&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0470-8105&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0470-8105&client=summon |