Senescence of Nickel-Transformed Cells by an X Chromosome: Possible Epigenetic Control

Transfer of a normal Chinese hamster X chromosome (carried in a mouse A9 donor cell line) to a nickel-transformed Chinese hamster cell line with an Xq chromosome deletion resulted in senescense of these previously immortal cells. At early passages of the A9/CX donor cells, the hamster X chromosome w...

Full description

Saved in:
Bibliographic Details
Published in:Science (American Association for the Advancement of Science) Vol. 251; no. 4995; pp. 796 - 799
Main Authors: Klein, Catherine B., Conway, Kathleen, Wang, Xin Wei, Bharma, Rupinder K., Lin, Xinhua, Cohen, Mitchell D., Annab, Lois, Barrett, J. Carl, Costa, Max
Format: Journal Article
Language:English
Published: Washington, DC American Society for the Advancement of Science 15-02-1991
American Association for the Advancement of Science
The American Association for the Advancement of Science
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Transfer of a normal Chinese hamster X chromosome (carried in a mouse A9 donor cell line) to a nickel-transformed Chinese hamster cell line with an Xq chromosome deletion resulted in senescense of these previously immortal cells. At early passages of the A9/CX donor cells, the hamster X chromosome was highly active, inducing senescence in 100% of the colonies obtained after its transfer into the nickel-transformed cells. However, senescence was reduced to 50% when Chinese hamster X chromosomes were transferred from later passage A9 cells. Full senescing activity of the intact hamster X chromosome was restored by treatment of the donor mouse cells with 5-azacytidine, which induced demethylation of DNA. These results suggest that a senescence gene or genes, which may be located on the Chinese hamster X chromosome, can be regulated by DNA methylation, and that escape from senescence and possibly loss of tumor suppressor gene activity can occur by epigenetic mechanisms.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0036-8075
1095-9203
DOI:10.1126/science.1990442