Interferon-inducible mechanism of dendritic cell-mediated HIV-1 dissemination is dependent on Siglec-1/CD169
Human immunodeficiency virus type 1 (HIV-1) interactions with myeloid dendritic cells (DCs) can result in virus dissemination to CD4⁺ T cells via a trans infection pathway dependent on virion incorporation of the host cell derived glycosphingolipid (GSL), GM3. The mechanism of DC-mediated trans infe...
Saved in:
Published in: | PLoS pathogens Vol. 9; no. 4; p. e1003291 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Public Library of Science
01-04-2013
Public Library of Science (PLoS) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Human immunodeficiency virus type 1 (HIV-1) interactions with myeloid dendritic cells (DCs) can result in virus dissemination to CD4⁺ T cells via a trans infection pathway dependent on virion incorporation of the host cell derived glycosphingolipid (GSL), GM3. The mechanism of DC-mediated trans infection is extremely efficacious and can result in infection of multiple CD4⁺ T cells as these cells make exploratory contacts on the DC surface. While it has long been appreciated that activation of DCs with ligands that induce type I IFN signaling pathway dramatically enhances DC-mediated T cell trans infection, the mechanism by which this occurs has remained unclear until now. Here, we demonstrate that the type I IFN-inducible Siglec-1, CD169, is the DC receptor that captures HIV in a GM3-dependent manner. Selective downregulation of CD169 expression, neutralizing CD169 function, or depletion of GSLs from virions, abrogated DC-mediated HIV-1 capture and trans infection, while exogenous expression of CD169 in receptor-naïve cells rescued GSL-dependent capture and trans infection. HIV-1 particles co-localized with CD169 on DC surface immediately following capture and subsequently within non-lysosomal compartments that redistributed to the DC--T cell infectious synapses upon initiation of T cell contact. Together, these findings describe a novel mechanism of pathogen parasitization of host encoded cellular recognition machinery (GM3--CD169 interaction) for DC-dependent HIV dissemination. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Conceived and designed the experiments: WBP HA SG. Performed the experiments: WBP HA SDG NPR XY. Analyzed the data: WBP HA SDG NPR SG. Contributed reagents/materials/analysis tools: WBP HA SDG NPR XY BMR. Wrote the paper: WBP HA SG. The authors have declared that no competing interests exist. |
ISSN: | 1553-7374 1553-7366 1553-7374 |
DOI: | 10.1371/journal.ppat.1003291 |