Predicting cancer origins with a DNA methylation-based deep neural network model
Cancer origin determination combined with site-specific treatment of metastatic cancer patients is critical to improve patient outcomes. Existing pathology and gene expression-based techniques often have limited performance. In this study, we developed a deep neural network (DNN)-based classifier fo...
Saved in:
Published in: | PloS one Vol. 15; no. 5; p. e0226461 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Public Library of Science
08-05-2020
Public Library of Science (PLoS) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Cancer origin determination combined with site-specific treatment of metastatic cancer patients is critical to improve patient outcomes. Existing pathology and gene expression-based techniques often have limited performance. In this study, we developed a deep neural network (DNN)-based classifier for cancer origin prediction using DNA methylation data of 7,339 patients of 18 different cancer origins from The Cancer Genome Atlas (TCGA). This DNN model was evaluated using four strategies: (1) when evaluated by 10-fold cross-validation, it achieved an overall specificity of 99.72% (95% CI 99.69%-99.75%) and sensitivity of 92.59% (95% CI 91.87%-93.30%); (2) when tested on hold-out testing data of 1,468 patients, the model had an overall specificity of 99.83% and sensitivity of 95.95%; (3) when tested on 143 metastasized cancer patients (12 cancer origins), the model achieved an overall specificity of 99.47% and sensitivity of 95.95%; and (4) when tested on an independent dataset of 581 samples (10 cancer origins), the model achieved overall specificity of 99.91% and sensitivity of 93.43%. Compared to existing pathology and gene expression-based techniques, the DNA methylation-based DNN classifier showed higher performance and had the unique advantage of easy implementation in clinical settings. In summary, our study shows that DNA methylation-based DNN models has potential in both diagnosis of cancer of unknown primary and identification of cancer cell types of circulating tumor cells. |
---|---|
AbstractList | Cancer origin determination combined with site-specific treatment of metastatic cancer patients is critical to improve patient outcomes. Existing pathology and gene expression-based techniques often have limited performance. In this study, we developed a deep neural network (DNN)-based classifier for cancer origin prediction using DNA methylation data of 7,339 patients of 18 different cancer origins from The Cancer Genome Atlas (TCGA). This DNN model was evaluated using four strategies: (1) when evaluated by 10-fold cross-validation, it achieved an overall specificity of 99.72% (95% CI 99.69%-99.75%) and sensitivity of 92.59% (95% CI 91.87%-93.30%); (2) when tested on hold-out testing data of 1,468 patients, the model had an overall specificity of 99.83% and sensitivity of 95.95%; (3) when tested on 143 metastasized cancer patients (12 cancer origins), the model achieved an overall specificity of 99.47% and sensitivity of 95.95%; and (4) when tested on an independent dataset of 581 samples (10 cancer origins), the model achieved overall specificity of 99.91% and sensitivity of 93.43%. Compared to existing pathology and gene expression-based techniques, the DNA methylation-based DNN classifier showed higher performance and had the unique advantage of easy implementation in clinical settings. In summary, our study shows that DNA methylation-based DNN models has potential in both diagnosis of cancer of unknown primary and identification of cancer cell types of circulating tumor cells. |
Audience | Academic |
Author | Xu, Rong Zheng, Chunlei |
AuthorAffiliation | Center for Artificial Intelligence in Drug Discovery, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America Marquette University, UNITED STATES |
AuthorAffiliation_xml | – name: Center for Artificial Intelligence in Drug Discovery, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America – name: Marquette University, UNITED STATES |
Author_xml | – sequence: 1 givenname: Chunlei surname: Zheng fullname: Zheng, Chunlei organization: Center for Artificial Intelligence in Drug Discovery, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America – sequence: 2 givenname: Rong orcidid: 0000-0003-3127-4795 surname: Xu fullname: Xu, Rong organization: Center for Artificial Intelligence in Drug Discovery, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32384093$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkttu1DAQhiNURA_wBggiISG42MWHrJ3cIK3KaaWKVlBxazn2JOuS2FvbofTt8bJptUG9QL6wNf7mH8_4P84OrLOQZc8xmmPK8bsrN3gru_kmheeIEFYw_Cg7whUlM0YQPdg7H2bHIVwhtKAlY0-yQ0poWaCKHmUXFx60UdHYNlfSKvC586Y1NuQ3Jq5zmX_4usx7iOvbTkbj7KyWAXSuATa5hcHLLm3xxvmfee80dE-zx43sAjwb95Ps8tPHy9Mvs7Pzz6vT5dlMsYrEGTQlrRiTGjWSYr4oSraQdUlwA5zxCnjdELqotNKIVwyIwqgGWhGkCSe1oifZy53spnNBjLMIghQIoYonLhGrHaGdvBIbb3rpb4WTRvwNON8K6aNRHYgGKS2JaipcLooaYakIY4oiXNTpQjdJ6_1Ybah70ApsTI1PRKc31qxF634JTlBFiiIJvBkFvLseIETRm6Cg66QFN-zenWZAOU_oq3_Qh7sbqVamBoxtXKqrtqJiyQglhPNiqzV_gEpLQ29UMk5jUnyS8HaSkJgIv2MrhxDE6vu3_2fPf0zZ13vsGmQX18F1w9ZRYQoWO1B5F4KH5n7IGImt7--mIba-F6PvU9qL_Q-6T7ozOv0DOfn-mw |
CitedBy_id | crossref_primary_10_3390_cells10030576 crossref_primary_10_1186_s13148_021_01047_z crossref_primary_10_1016_j_neo_2024_101021 crossref_primary_10_1093_bib_bbad411 crossref_primary_10_1093_narcan_zcad017 crossref_primary_10_1016_j_humgen_2022_201140 crossref_primary_10_1093_biomethods_bpae028 crossref_primary_10_1186_s12864_022_09061_y crossref_primary_10_1038_s41598_024_53754_1 crossref_primary_10_1016_j_csbj_2024_05_015 crossref_primary_10_3390_biomedicines9111733 crossref_primary_10_3390_jcm11082110 crossref_primary_10_1016_j_aichem_2023_100038 crossref_primary_10_3390_cancers13153768 crossref_primary_10_1016_j_semcancer_2022_12_009 crossref_primary_10_3390_app10238539 crossref_primary_10_3389_fgene_2022_885635 crossref_primary_10_1016_j_jbi_2022_104003 crossref_primary_10_1016_j_compbiomed_2024_108496 crossref_primary_10_1371_journal_pcbi_1009959 crossref_primary_10_1093_bib_bbad485 crossref_primary_10_1007_s00428_023_03708_1 crossref_primary_10_1186_s12859_022_04815_7 crossref_primary_10_1186_s12859_022_04783_y crossref_primary_10_1093_jmcb_mjad023 |
Cites_doi | 10.1016/B978-0-12-380866-0.60002-2 10.1016/j.cell.2016.06.017 10.1093/nar/gkv1507 10.4103/2394-4722.158803 10.1634/theoncologist.2011-0466 10.1038/ncomms14825 10.1038/nbt.4235 10.1200/JCO.2008.17.9762 10.1093/jnci/djt099 10.1097/PAT.0000000000000194 10.1158/1078-0432.CCR-04-2236 10.1186/1476-4598-12-57 10.1007/978-3-319-22909-6_10 10.1038/nbt.3300 10.1007/s10147-013-0583-0 10.1016/j.placenta.2007.09.011 10.1093/ajcp/107.1.12 10.1056/NEJMra1303917 10.1038/modpathol.2010.57 10.1016/S1470-2045(16)30297-2 10.3390/cells8101195 10.5858/2007-131-1561-POIMHD 10.1016/j.ymeth.2016.06.001 10.1016/j.gpb.2017.01.004 10.1016/j.jmoldx.2010.11.001 10.1038/nbt1392 10.1158/1078-0432.CCR-10-2599 10.1200/JCO.2012.43.3755 10.1098/rsif.2017.0387 10.5858/2006-130-465-MCOHCU 10.1093/bioinformatics/btw074 10.1016/S0893-6080(98)00116-6 10.1016/j.ejca.2007.06.023 10.1016/S1470-2045(08)70151-7 10.1093/bioinformatics/btm254 10.1007/978-3-319-55947-6_1 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2020 Public Library of Science 2020 Zheng, Xu. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 Zheng, Xu 2020 Zheng, Xu |
Copyright_xml | – notice: COPYRIGHT 2020 Public Library of Science – notice: 2020 Zheng, Xu. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 Zheng, Xu 2020 Zheng, Xu |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PIMPY PQEST PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM DOA |
DOI | 10.1371/journal.pone.0226461 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agriculture Science Database Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Biological Science Collection ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic Technology Collection Technology Research Database Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Agricultural Science Database MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | DNN model for cancer origin prediction |
EISSN | 1932-6203 |
Editor | Bozdag, Serdar |
Editor_xml | – sequence: 1 givenname: Serdar surname: Bozdag fullname: Bozdag, Serdar |
EndPage | e0226461 |
ExternalDocumentID | 2400097920 oai_doaj_org_article_f0cda2cf91854b01ac266c3014bcdadf A623227747 10_1371_journal_pone_0226461 32384093 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States United States--US Ohio |
GeographicLocations_xml | – name: United States – name: United States--US – name: Ohio |
GrantInformation_xml | – fundername: NEI NIH HHS grantid: R01 EY029297 – fundername: NCATS NIH HHS grantid: UL1 TR002548 – fundername: NIA NIH HHS grantid: R56 AG062272 – fundername: NIA NIH HHS grantid: R01 AG061388 – fundername: NIA NIH HHS grantid: R01 AG057557 – fundername: NICHD NIH HHS grantid: DP2 HD084068 – fundername: ; grantid: AG061388-01 – fundername: ; grantid: AG057557-01 – fundername: ; grantid: AG062272-01 – fundername: ; grantid: RSG-16-049-01-MPC – fundername: ; grantid: DP2HD084068 |
GroupedDBID | --- 123 29O 2WC 3V. 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ADBBV ADRAZ AEAQA AENEX AFKRA AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BBORY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CGR CS3 CUY CVF D1I D1J D1K DIK DU5 E3Z EAP EAS EBD ECM EIF EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IHR IHW INH INR IOV IPNFZ IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ NPM O5R O5S OK1 P2P P62 PATMY PDBOC PIMPY PQQKQ PROAC PSQYO PTHSS PV9 PYCSY RIG RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM AAYXX AFPKN CITATION 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PQEST PQUKI PRINS RC3 7X8 5PM - 02 AAPBV ABPTK ADACO BBAFP KM |
ID | FETCH-LOGICAL-c692t-ef83966ad0fa31754865ab821fe7679e7bf2359dcd0796e2c10be3920d272bc3 |
IEDL.DBID | RPM |
ISSN | 1932-6203 |
IngestDate | Fri Nov 26 17:13:47 EST 2021 Tue Oct 22 15:07:54 EDT 2024 Tue Sep 17 21:15:12 EDT 2024 Fri Oct 25 23:49:44 EDT 2024 Thu Oct 10 18:47:01 EDT 2024 Tue Nov 19 20:59:19 EST 2024 Tue Nov 12 23:28:00 EST 2024 Thu Aug 01 19:36:53 EDT 2024 Thu Aug 01 19:55:14 EDT 2024 Tue Aug 20 22:11:49 EDT 2024 Fri Aug 23 00:29:36 EDT 2024 Wed Oct 16 00:44:51 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c692t-ef83966ad0fa31754865ab821fe7679e7bf2359dcd0796e2c10be3920d272bc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
ORCID | 0000-0003-3127-4795 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7209244/ |
PMID | 32384093 |
PQID | 2400097920 |
PQPubID | 1436336 |
PageCount | e0226461 |
ParticipantIDs | plos_journals_2400097920 doaj_primary_oai_doaj_org_article_f0cda2cf91854b01ac266c3014bcdadf pubmedcentral_primary_oai_pubmedcentral_nih_gov_7209244 proquest_miscellaneous_2400548377 proquest_journals_2400097920 gale_infotracmisc_A623227747 gale_infotracacademiconefile_A623227747 gale_incontextgauss_ISR_A623227747 gale_incontextgauss_IOV_A623227747 gale_healthsolutions_A623227747 crossref_primary_10_1371_journal_pone_0226461 pubmed_primary_32384093 |
PublicationCentury | 2000 |
PublicationDate | 2020-05-08 |
PublicationDateYYYYMMDD | 2020-05-08 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-08 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
PublicationTitle | PloS one |
PublicationTitleAlternate | PLoS One |
PublicationYear | 2020 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | R Poplin (pone.0226461.ref028) 2018; 36 N Rosenfeld (pone.0226461.ref012) 2008; 26 C Paoletti (pone.0226461.ref045) 2016; 882 G Pentheroudakis (pone.0226461.ref044) 2007; 43 JD Hainsworth (pone.0226461.ref001) 2013; 31 GR Varadhachary (pone.0226461.ref004) 2014; 19 FA Monzon (pone.0226461.ref010) 2009; 27 AV Artemov (pone.0226461.ref029) 2016 GR Varadhachary (pone.0226461.ref002) 2008; 9 E Meiri (pone.0226461.ref014) 2012; 17 J Ohgane (pone.0226461.ref020) 2008; 29 B Alipanahi (pone.0226461.ref025) 2015; 33 pone.0226461.ref040 SY Park (pone.0226461.ref008) 2007; 131 GR Varadhachary (pone.0226461.ref041) 2014; 371 A Colaprico (pone.0226461.ref031) 2016; 44 XJ Ma (pone.0226461.ref009) 2006; 130 BR DeYoung (pone.0226461.ref006) 2000; 17 T Ching (pone.0226461.ref023) 2018; 15 RW Brown (pone.0226461.ref005) 1997; 107 pone.0226461.ref032 GR Varadhachary (pone.0226461.ref003) 2011; 17 S Min (pone.0226461.ref022) 2017; 18 pone.0226461.ref036 S Rosenwald (pone.0226461.ref013) 2010; 23 pone.0226461.ref038 FA Greco (pone.0226461.ref017) 2013; 105 pone.0226461.ref037 DS Ettinger (pone.0226461.ref043) 2011; 9 J Zou (pone.0226461.ref049) 2017; 15 M Kulis (pone.0226461.ref019) 2010; 70 PD Potdar (pone.0226461.ref048) 2015; 1 F Iorio (pone.0226461.ref034) 2016; 166 pone.0226461.ref030 S Davis (pone.0226461.ref033) 2007; 23 RW Tothill (pone.0226461.ref016) 2015; 47 R Pillai (pone.0226461.ref011) 2011; 13 OA Sindeeva (pone.0226461.ref047) 2019; 8 JL Dennis (pone.0226461.ref007) 2005; 11 S Moran (pone.0226461.ref018) 2016; 17 T Du (pone.0226461.ref026) 2016; 110 LTD Chinen (pone.0226461.ref046) 2017; 994 E Arvaniti (pone.0226461.ref027) 2017; 8 JH McDonald (pone.0226461.ref035) 2014 Y Chen (pone.0226461.ref024) 2016; 32 N Qian (pone.0226461.ref039) 1999; 12 AF Fernandez (pone.0226461.ref021) 2012; 22 A Krämer (pone.0226461.ref042) 2008; 3 G Pentheroudakis (pone.0226461.ref015) 2013; 12 |
References_xml | – volume: 70 start-page: 27 year: 2010 ident: pone.0226461.ref019 article-title: DNA methylation and cancer publication-title: Adv Genet doi: 10.1016/B978-0-12-380866-0.60002-2 contributor: fullname: M Kulis – volume: 166 start-page: 740 issue: 3 year: 2016 ident: pone.0226461.ref034 article-title: A Landscape of Pharmacogenomic Interactions in Cancer publication-title: Cell doi: 10.1016/j.cell.2016.06.017 contributor: fullname: F Iorio – volume: 44 start-page: e71 year: 2016 ident: pone.0226461.ref031 article-title: TCGAbiolinks: a R/Bioconductor package for integrative analysis of TCGA data publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv1507 contributor: fullname: A Colaprico – volume: 1 start-page: 44 year: 2015 ident: pone.0226461.ref048 article-title: Role of circulating tumor cells in future diagnosis and therapy of cancer publication-title: J Cancer Metastasis Treat doi: 10.4103/2394-4722.158803 contributor: fullname: PD Potdar – volume: 17 start-page: 801 year: 2012 ident: pone.0226461.ref014 article-title: A second-generation microRNA-based assay for diagnosing tumor tissue origin publication-title: Oncologist doi: 10.1634/theoncologist.2011-0466 contributor: fullname: E Meiri – volume: 8 start-page: 14825 year: 2017 ident: pone.0226461.ref027 article-title: Sensitive detection of rare disease-associated cell subsets via representation learning publication-title: Nat Commun doi: 10.1038/ncomms14825 contributor: fullname: E Arvaniti – volume: 36 start-page: 983 issue: 10 year: 2018 ident: pone.0226461.ref028 article-title: A universal SNP and small-indel variant caller using deep neural networks publication-title: Nat Biotechnol doi: 10.1038/nbt.4235 contributor: fullname: R Poplin – year: 2016 ident: pone.0226461.ref029 article-title: Integrated deep learned transcriptomic and structure-based predictor of clinical trials outcomes publication-title: BioRxiv contributor: fullname: AV Artemov – volume: 27 start-page: 2503 year: 2009 ident: pone.0226461.ref010 article-title: Multicenter validation of a 1,550-gene expression profile for identification of tumor tissue of origin publication-title: J Clin Oncol doi: 10.1200/JCO.2008.17.9762 contributor: fullname: FA Monzon – ident: pone.0226461.ref036 – ident: pone.0226461.ref032 – volume: 9 start-page: 1358 year: 2011 ident: pone.0226461.ref043 article-title: NCCN Clinical Practice Guidelines Occult primary publication-title: J Natl Compr Canc Netw contributor: fullname: DS Ettinger – volume: 105 start-page: 782 issue: 11 year: 2013 ident: pone.0226461.ref017 article-title: Molecular profiling diagnosis in unknown primary cancer: accuracy and ability to complement standard pathology publication-title: J Natl Cancer Inst doi: 10.1093/jnci/djt099 contributor: fullname: FA Greco – volume: 17 start-page: 184 year: 2000 ident: pone.0226461.ref006 article-title: Immunohistologic evaluation of metastatic carcinomas of unknown origin: an algorithmic approach publication-title: Semin Diagn Pathol contributor: fullname: BR DeYoung – volume: 47 start-page: 7 year: 2015 ident: pone.0226461.ref016 article-title: Development and validation of a gene expression tumour classifier for cancer of unknown primary publication-title: Pathology doi: 10.1097/PAT.0000000000000194 contributor: fullname: RW Tothill – volume: 11 start-page: 3766 year: 2005 ident: pone.0226461.ref007 article-title: Markers of adenocarcinoma characteristic of the site of origin: development of a diagnostic algorithm publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-04-2236 contributor: fullname: JL Dennis – volume: 12 start-page: 57 year: 2013 ident: pone.0226461.ref015 article-title: Novel microRNA-based assay demonstrates 92% agreement with diagnosis based on clinicopathologic and management data in a cohort of patients with carcinoma of unknown primary publication-title: Mol Cancer doi: 10.1186/1476-4598-12-57 contributor: fullname: G Pentheroudakis – volume: 882 start-page: 235 year: 2016 ident: pone.0226461.ref045 article-title: Circulating Tumor Cells publication-title: Adv Exp Med Biol doi: 10.1007/978-3-319-22909-6_10 contributor: fullname: C Paoletti – volume: 33 start-page: 831 issue: 8 year: 2015 ident: pone.0226461.ref025 article-title: Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning publication-title: Nat Biotechnol doi: 10.1038/nbt.3300 contributor: fullname: B Alipanahi – volume: 19 start-page: 479 year: 2014 ident: pone.0226461.ref004 article-title: Carcinoma of unknown primary with gastrointestinal profile: immunohistochemistry and survival data for this favorable subset publication-title: Int J Clin Oncol doi: 10.1007/s10147-013-0583-0 contributor: fullname: GR Varadhachary – volume: 29 start-page: S29 issue: Suppl A year: 2008 ident: pone.0226461.ref020 article-title: Epigenetics: the DNA methylation profile of tissue-dependent and differentially methylated regions in cells publication-title: Placenta doi: 10.1016/j.placenta.2007.09.011 contributor: fullname: J Ohgane – volume: 107 start-page: 12 year: 1997 ident: pone.0226461.ref005 article-title: Immunohistochemical identification of tumor markers in metastatic adenocarcinoma. A diagnostic adjunct in the determination of primary site publication-title: Am J Clin Pathol doi: 10.1093/ajcp/107.1.12 contributor: fullname: RW Brown – volume: 371 start-page: 757 year: 2014 ident: pone.0226461.ref041 article-title: Cancer of unknown primary site publication-title: N Engl J Med doi: 10.1056/NEJMra1303917 contributor: fullname: GR Varadhachary – volume: 3 start-page: 164 year: 2008 ident: pone.0226461.ref042 article-title: Carcinoma of Unknown Primary—an Orphan Disease? publication-title: Breast Care (Basel) contributor: fullname: A Krämer – volume: 23 start-page: 814 year: 2010 ident: pone.0226461.ref013 article-title: Validation of a microRNA-based qRT-PCR test for accurate identification of tumor tissue origin publication-title: Mod Pathol doi: 10.1038/modpathol.2010.57 contributor: fullname: S Rosenwald – volume: 17 start-page: 1386 year: 2016 ident: pone.0226461.ref018 article-title: Epigenetic profiling to classify cancer of unknown primary: a multicentre, retrospective analysis publication-title: Lancet Oncol doi: 10.1016/S1470-2045(16)30297-2 contributor: fullname: S Moran – volume: 8 issue: 10 year: 2019 ident: pone.0226461.ref047 article-title: New Frontiers in Diagnosis and Therapy of Circulating Tumor Markers in Cerebrospinal Fluid In Vitro and In Vivo publication-title: Cells doi: 10.3390/cells8101195 contributor: fullname: OA Sindeeva – ident: pone.0226461.ref040 – volume: 131 start-page: 1561 year: 2007 ident: pone.0226461.ref008 article-title: Panels of immunohistochemical markers help determine primary sites of metastatic adenocarcinoma publication-title: Arch Pathol Lab Med doi: 10.5858/2007-131-1561-POIMHD contributor: fullname: SY Park – ident: pone.0226461.ref038 – volume: 110 start-page: 97 year: 2016 ident: pone.0226461.ref026 article-title: Prediction of residue-residue contact matrix for protein-protein interaction with Fisher score features and deep learning publication-title: Methods doi: 10.1016/j.ymeth.2016.06.001 contributor: fullname: T Du – volume: 15 start-page: 130 issue: 2 year: 2017 ident: pone.0226461.ref049 article-title: eTumorType, An Algorithm of Discriminating Cancer Types for Circulating Tumor Cells or Cell-free DNAs in Blood publication-title: Genomics Proteomics Bioinformatics doi: 10.1016/j.gpb.2017.01.004 contributor: fullname: J Zou – volume: 13 start-page: 48 year: 2011 ident: pone.0226461.ref011 article-title: Validation and reproducibility of a microarray-based gene expression test for tumor identification in formalin-fixed, paraffin-embedded specimens publication-title: J Mol Diagn doi: 10.1016/j.jmoldx.2010.11.001 contributor: fullname: R Pillai – volume: 26 start-page: 462 year: 2008 ident: pone.0226461.ref012 article-title: MicroRNAs accurately identify cancer tissue origin publication-title: Nat Biotechnol doi: 10.1038/nbt1392 contributor: fullname: N Rosenfeld – volume: 22 start-page: 407 year: 2012 ident: pone.0226461.ref021 article-title: A DNA methylation fingerprint of 1628 human samples. Genome Res. A DNA methylation fingerprint of 1628 human samples publication-title: Genome Res contributor: fullname: AF Fernandez – ident: pone.0226461.ref030 – volume: 17 start-page: 4063 year: 2011 ident: pone.0226461.ref003 article-title: Prospective gene signature study using microRNA to identify the tissue of origin in patients with carcinoma of unknown primary publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-10-2599 contributor: fullname: GR Varadhachary – volume: 31 start-page: 217 year: 2013 ident: pone.0226461.ref001 article-title: Molecular gene expression profiling to predict the tissue of origin and direct site-specific therapy in patients with carcinoma of unknown primary site: a prospective trial of the Sarah Cannon research institute publication-title: J Clin Oncol doi: 10.1200/JCO.2012.43.3755 contributor: fullname: JD Hainsworth – volume: 15 issue: 141 year: 2018 ident: pone.0226461.ref023 article-title: Opportunities and obstacles for deep learning in biology and medicine publication-title: J R Soc Interface doi: 10.1098/rsif.2017.0387 contributor: fullname: T Ching – volume: 130 start-page: 465 year: 2006 ident: pone.0226461.ref009 article-title: Molecular classification of human cancers using a 92-gene real-time quantitative polymerase chain reaction assay publication-title: Arch Pathol Lab Med doi: 10.5858/2006-130-465-MCOHCU contributor: fullname: XJ Ma – volume: 32 start-page: 1832 issue: 12 year: 2016 ident: pone.0226461.ref024 article-title: Gene expression inference with deep learning publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw074 contributor: fullname: Y Chen – volume: 12 start-page: 145 year: 1999 ident: pone.0226461.ref039 article-title: On the momentum term in gradient descent learning algorithms publication-title: Neural Netw doi: 10.1016/S0893-6080(98)00116-6 contributor: fullname: N Qian – volume-title: Handbook of Biological Statistics year: 2014 ident: pone.0226461.ref035 contributor: fullname: JH McDonald – volume: 43 start-page: 2026 year: 2007 ident: pone.0226461.ref044 article-title: Switching benchmarks in cancer of unknown primary: from autopsy to microarray publication-title: Eur J Cancer doi: 10.1016/j.ejca.2007.06.023 contributor: fullname: G Pentheroudakis – volume: 9 start-page: 596 year: 2008 ident: pone.0226461.ref002 article-title: Carcinoma of unknown primary with a colon-cancer profile-changing paradigm and emerging definitions publication-title: Lancet Oncol doi: 10.1016/S1470-2045(08)70151-7 contributor: fullname: GR Varadhachary – ident: pone.0226461.ref037 – volume: 18 start-page: 851 year: 2017 ident: pone.0226461.ref022 article-title: Deep learning in bioinformatics publication-title: Brief Bioinform contributor: fullname: S Min – volume: 23 start-page: 1846 year: 2007 ident: pone.0226461.ref033 article-title: GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm254 contributor: fullname: S Davis – volume: 994 start-page: 1 year: 2017 ident: pone.0226461.ref046 article-title: Circulating Tumor Cells as Cancer Biomarkers in the Clinic publication-title: Adv Exp Med Biol doi: 10.1007/978-3-319-55947-6_1 contributor: fullname: LTD Chinen |
SSID | ssj0053866 |
Score | 2.5377061 |
Snippet | Cancer origin determination combined with site-specific treatment of metastatic cancer patients is critical to improve patient outcomes. Existing pathology and... |
SourceID | plos doaj pubmedcentral proquest gale crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | e0226461 |
SubjectTerms | Accuracy Artificial intelligence Artificial neural networks Biochemistry Biology and life sciences Biomarkers, Tumor - genetics Cancer Cancer diagnosis Cancer genetics Cancer metastasis Cancer patients Cancer treatment Classifiers Computer aided medical diagnosis Computer and Information Sciences Databases, Genetic Datasets Datasets as Topic Deep Learning Deoxyribonucleic acid DNA DNA Methylation Gene expression Genes Genetic aspects Genomes Genomics Head & neck cancer Humans Medicine and Health Sciences Metastases Metastasis Methods Methylation MicroRNAs Neoplasms - diagnosis Neoplasms - genetics Neural networks Origins Pathology Patients Physical Sciences Prostate cancer Proteins Sensitivity Setting (Literature) Support vector machines Tumor cells Tumors Variance analysis |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVgT1wQ5atLCxiEBBzSOk5iJ8eFtiqXUtEKcbOcsV2QUHa16R7675mJvRFBleDAdWeSbN547Bln_IaxN0EWTVW4PAMQFhMUX-E8WNmstaFRzhG_DG1ln17os2_10THR5IytvqgmLNIDR-AOgwBnJYQGF5ayFbkFXFKAEoEWBS4Ms6-ot8lUnIPRi5VKB-UKnR8muxyslp0_EHR2VOWThWjg6x9n5dnq57K_LeT8s3Lyt6Xo5AG7n2JIvoj_fYfd8d1DtpO8tOfvEpX0-0fs_HxNH2KotJkD2XfNYyesntMGLLf86GzBqYv0TayJy2hVc9x5v-JEdYmP6WKhOB965jxmlyfHlx9Ps9RDIQPVyOvMB4yAlLJOBEuhQlmryra1zIPXSjdet2itqnHghG6Ul5CL1mPMJJzUsoXiCZt1CNou40XtK9AInqtFCaCb2oe8BYyZAHO0EuYs2-JpVpEpwwyfyzRmGBEYQ_ibhP-cfSDQR13iuR5-QOubZH3zN-vP2UsymYmHRkdvNQuM6qTE0FbP2etBg7guOiqmubKbvjefPn_9B6WLLxOlt0kpLNH4YNMBBnwn4tCaaO5PNNFjYSLepQG2RaU3VMcrGo2o45XbQXe7-NUopptSgVznl5uoU1F3ALz70zhGR2QLDMswjS_mTE9G7wT6qaT78X2gGtdSYIJePvsfttpj9yRtVlC1aL3PZtfrjX_O7vZu82Jw3l8rU0nq priority: 102 providerName: Directory of Open Access Journals |
Title | Predicting cancer origins with a DNA methylation-based deep neural network model |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32384093 https://www.proquest.com/docview/2400097920 https://search.proquest.com/docview/2400548377 https://pubmed.ncbi.nlm.nih.gov/PMC7209244 https://doaj.org/article/f0cda2cf91854b01ac266c3014bcdadf http://dx.doi.org/10.1371/journal.pone.0226461 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbYPXFBtDwaaItBSMAhu47zcHJc-lA5UFa0QtwiZ-y0ldok2nQP_HtmEiciqAfEdWeSbGY89jfO5xnG3pcyzOLQBD6A0Jig2BjnwVj7hS6zxBiqL0Nb2WcX6vxnenxCZXLi4SxMR9qH4mZR3d4tqpvrjlvZ3MFy4Ikt11-PlBSYNkTLGZshNhxS9H76xQBOEndGLlTB0rlk0dSVXQg6NppQd5gQlypMbcLJctRV7R_n5nlzW7cPAc-_-ZN_LEinT9kThyT5qv_HO-yRrXbZjovVln90BaU_PWPr9YY-xxDBmQN5ecP7flgtp21Yrvnx-YpTL-lfPTPOp7XNcGNtw6ngJT6m6univOuc85xdnp5cHp35rpOCD0km731bIg5KEm1EqQkwRGkS6yKVQWlVojKrCvRZnBkwQmWJlRCIwiJyEkYqWUD4gs0rtN8e42FqY1BoR5OKCEBlqS2DAhA5AWZqEXjMH-yZN329jLz7aKYwz-gNk5MrcucKj30mo4-6VO26-6HeXOXO53kpwGgJZYbgIipEoAFhBVAyWKDAlB57Qy7L-6OjY8zmK8R2UiLAVR5712lQxYuKKDVXetu2-ZdvP_5B6eL7ROmDUyprdD5od4wB34kqaU009yeaGLcwEe_RABus0ubE5hWZQqvjlcOge1j8dhTTTYkmV9l62-vE1CMA7_6yH6OjZYcR7zE1Gb0T008lGH9dwXEXb6_--8rX7LGkfQoiiqb7bH6_2doDNmvN9rDbBDnsQvg3zb9J7Q |
link.rule.ids | 230,315,729,782,786,866,887,2108,27935,27936,53803,53805 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF7RcIALpbwaKHRBSMDByXode-1j6EOpaENEI8RttZ5dl0qtE8XNof-eGXsdYdQD6tUztuV57M6sv5lh7GMhoyyObBgACIMJiotxHYxNkJsiS6yl_jJ0lD05V9Nf6eERtcmJ21qYGrQP-eWgvLoelJe_a2zl8hqGLU5sODs7UFJg2jAabrGH6K8iapP0ZgHGS0niq-QiFQ69UgbLRekGggpHE5oPE-FmhclN1NmQ6r79m9W5t7xaVHeFnv8iKP_ako637_kxT9kTH4PycUPeYQ9c-YzteC-v-GffivrLczabrehHDkGjOZB9rHgzSavidIDLDT-cjjlNob5tMHUB7YqWW-eWnFpl4mvKBmjO65k7L9j8-Gh-MAn8DIYAkkzeBK7ACCpJjBWFoVBjlCaxyVMZFk4lKnMqR23HmQUrVJY4CaHIHcZcwkolc4hesl6Jct9lPEpdDArlb1MxAlBZ6oowB4y5AHO8EfRZ0OpBL5tOG7r-3aYwQ2kEo0mF2quwz76Ssja81Ce7vrBYXWgvYF0IsEZCkWFYMspFaAADEqA0MkeCLfpsn1Stm6LTjbfrMUaFUmJorPrsQ81BvTJKAuNcmHVV6ZPvP_-D6fxHh-mTZyoWaDRgfAEEfhP14Opw7nU40eOhQ94lw2ylUmnCAYtModTxztZY7ya_35DpoQSwK91i3fDENF0An_6qse2NZFtP6TPVsfqO6LsUNPa6Vbk37tf3vnOfPZrMz0716cn02xv2WNJpB8FN0z3Wu1mt3Vu2Vdn1u3oB-ANNo15_ |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELboIiEuQHl1oVCDkIBDdh3n4eS4dLtqBSwrWiFuluNHqdRmo033wL9nJnEignpAcI0niTIPe8b5_A0hbxyP8iQyYaA1U1Cg2ATmwUQFhXJ5agzyy-BW9vGpWH7P5kdIk9O3-mpA-7q4mJSXV5Py4keDrayu9LTDiU1Xnw8FZ1A2xNPKuOkOuQ0xy5KuUG8nYbiUpv6kXCTCqTfMpFqXdsLw8GiKPWIiWLCgwIkGi1LD3d_P0KPqcl3flH7-iaL8bVla3P-PD3pA7vlclM5akV1yy5YPya6P9pq-85TU7x-R1WqDP3QQIk01-smGth21aoobuVTR-XJGsRv1zxZbF-DqaKixtqJImQmvKVvAOW167zwmZ4ujs8PjwPdiCHSa8-vAOsik0lQZ5hSmHHGWJqrIeOisSEVuRQFWT3KjDRN5arkOWWEh92KGC17o6AkZlaD7PUKjzCZagA1MxmKtRZ5ZFxYaci8NtV6sxyTobCGrlnFDNr_dBFQqrWIkmlF6M47JBzRYL4t82c2F9eZceiVLx7RRXLsc0pO4YKHSkJhoLCcLGDBuTA7Q3LI9fNpHvZxBdsg5pMhiTF43EsiZUSIo51xt61qefPn2F0KnXwdCb72QW4PjaOUPQsA3IRfXQHJ_IAmRrwfDe-icnVZqiXhglgvQOtzZOezNw6_6YXwoAu1Ku962Mgl2GYCnP239u9dsFy1jIgaeP1D9cAQcvqEs9w7-7J_vPCB3VvOF_HSy_Pic3OW46YGo02yfjK43W_uC7NRm-7KZA34BOPFg_w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+cancer+origins+with+a+DNA+methylation-based+deep+neural+network+model&rft.jtitle=PloS+one&rft.au=Zheng%2C+Chunlei&rft.au=Xu%2C+Rong&rft.date=2020-05-08&rft.eissn=1932-6203&rft.volume=15&rft.issue=5&rft.spage=e0226461&rft.epage=e0226461&rft_id=info:doi/10.1371%2Fjournal.pone.0226461&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |