Heterogeneous characters modeling of instant message services users' online behavior

Research on temporal characteristics of human dynamics has attracted much attentions for its contribution to various areas such as communication, medical treatment, finance, etc. Existing studies show that the time intervals between two consecutive events present different non-Poisson characteristic...

Full description

Saved in:
Bibliographic Details
Published in:PloS one Vol. 13; no. 5; p. e0195518
Main Authors: Cui, Hongyan, Li, Ruibing, Fang, Yajun, Horn, Berthold, Welsch, Roy E
Format: Journal Article
Language:English
Published: United States Public Library of Science 07-05-2018
Public Library of Science (PLoS)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Research on temporal characteristics of human dynamics has attracted much attentions for its contribution to various areas such as communication, medical treatment, finance, etc. Existing studies show that the time intervals between two consecutive events present different non-Poisson characteristics, such as power-law, Pareto, bimodal distribution of power-law, exponential distribution, piecewise power-law, et al. With the occurrences of new services, new types of distributions may arise. In this paper, we study the distributions of the time intervals between two consecutive visits to QQ and WeChat service, the top two popular instant messaging services in China, and present a new finding that when the value of statistical unit T is set to 0.001s, the inter-event time distribution follows a piecewise distribution of exponential and power-law, indicating the heterogeneous character of IM services users' online behavior in different time scales. We infer that the heterogeneous character is related to the communication mechanism of IM and the habits of users. Then we develop a combination model of exponential model and interest model to characterize the heterogeneity. Furthermore, we find that the exponent of the inter-event time distribution of the same service is different in two cities, which is correlated with the popularity of the services. Our research is useful for the application of information diffusion, prediction of economic development of cities, and so on.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
These authors also contributed equally to this work.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0195518