Acyloxy nitroso compounds inhibit LIF signaling in endothelial cells and cardiac myocytes: evidence that STAT3 signaling is redox-sensitive

We previously showed that oxidative stress inhibits leukemia inhibitory factor (LIF) signaling by targeting JAK1, and the catalytic domains of JAK 1 and 2 have a cysteine-based redox switch. Thus, we postulated that the NO sibling and thiophylic compound, nitroxyl (HNO), would inhibit LIF-induced JA...

Full description

Saved in:
Bibliographic Details
Published in:PloS one Vol. 7; no. 8; p. e43313
Main Authors: Zgheib, Carlos, Kurdi, Mazen, Zouein, Fouad A, Gunter, Barak W, Stanley, Brian A, Zgheib, Joe, Romero, Damian G, King, S Bruce, Paolocci, Nazareno, Booz, George W
Format: Journal Article
Language:English
Published: United States Public Library of Science 15-08-2012
Public Library of Science (PLoS)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We previously showed that oxidative stress inhibits leukemia inhibitory factor (LIF) signaling by targeting JAK1, and the catalytic domains of JAK 1 and 2 have a cysteine-based redox switch. Thus, we postulated that the NO sibling and thiophylic compound, nitroxyl (HNO), would inhibit LIF-induced JAK-STAT3 activation. Pretreatment of human microvascular endothelial cells (HMEC-1) or neonatal rat cardiomyocytes with the HNO donors Angeli's salt or nitrosocyclohexyl acetate (NCA) inhibited LIF-induced STAT3 activation. NCA pretreatment also blocked the induction of downstream inflammatory genes (e.g. intercellular adhesion molecule 1, CCAAT/enhancer binding protein delta). The related 1-nitrosocyclohexyl pivalate (NCP; not a nitroxyl donor) was equally effective in inhibiting STAT3 activation, suggesting that these compounds act as thiolate targeting electrophiles. The JAK1 redox switch is likely not a target of acyloxy nitroso compounds, as NCA had no effect on JAK1 catalytic activity and only modestly affected JAK1-induced phosphorylation of the LIF receptor. However, pretreatment of recombinant human STAT3 with NCA or NCP reduced labeling of free sulfhydryl residues. We show that NCP in the presence of diamide enhanced STAT3 glutathionylation and dimerization in adult mouse cardiac myocytes and altered STAT3 under non-reducing conditions. Finally, we show that monomeric STAT3 levels are decreased in the Gαq model of heart failure in a redox-sensitive manner. Altogether, our evidence indicates that STAT3 has redox-sensitive cysteines that regulate its activation and are targeted by HNO donors and acyloxy nitroso compounds. These findings raise the possibility of new therapeutic strategies to target STAT3 signaling via a redox-dependent manner, particularly in the context of cardiac and non-cardiac diseases with prominent pro-inflammatory signaling.
Bibliography:Conceived and designed the experiments: CZ FAZ MK GWB. Performed the experiments: CZ FAZ MK BWG BAS GWB. Analyzed the data: CZ FAZ MK BWG GWB. Contributed reagents/materials/analysis tools: JZ SBK NP DGR GWB. Wrote the paper: CZ MK FAZ JZ NP BAS GWB.
Competing Interests: The authors have read the journal’s policy and have the following conflict: Nazareno Paolocci is a founder and stock holder of Cardioxyl Pharmaceuticals Inc. This does not alter the authors' adherence to all the PLoS ONE policies on sharing data and materials.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0043313